Skip to main content
Log in

Using tapered interfaces to manipulate nanoscale morphologies in ion-doped block polymers

  • Polymers/Soft Matter Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We detail the influence of tapered interfaces on the nanoscale morphologies of ion-doped poly(styrene-b-oligo-oxyethylene methacrylate) block polymers (BPs). Most significantly, the location of double-gyroid network phase window was found in ion-doped normal-tapered materials, and a similar window was not detectable in the corresponding non-tapered and inverse-tapered BPs. Additionally, the effective interaction parameters, χeff, were reduced substantially in the tapered materials in comparison with their non-tapered counterparts. Overall, this work demonstrates that tapering between polymer blocks provides unique control over BP morphologies and improves the material processability (due to lower χeff), potentially facilitating the development of future ion-conducting devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  1. W.-S. Young, W.-F. Kuan, and T.H. Epps, III: Block copolymer electrolytes for rechargeable lithium batteries. J. Polym. Sci. B: Polym. Phys. 52, 1 (2014).

    Article  CAS  Google Scholar 

  2. D.T. Hallinan and N.P. Balsara: Polymer electrolytes. Annu. Rev. Mater. Res. 43, 503 (2013).

    Article  CAS  Google Scholar 

  3. M.W. Matsen: Effect of architecture on the phase behavior of AB-type block copolymer melts. Macromolecules 45, 2161 (2012).

    Article  CAS  Google Scholar 

  4. H. Hu, M. Gopinadhan, and C.O. Osuji: Directed self-assembly of block copolymers: a tutorial review of strategies for enabling nanotechnology with soft matter. Soft Matter 10, 3867 (2014).

    Article  CAS  Google Scholar 

  5. J.M. Widin, A.K. Schmitt, A.L. Schmitt, K. Im, and M.K. Mahanthappa: Unexpected consequences of block polydispersity on the self-assembly of ABA triblock copolymers. J. Am. Chem. Soc. 134, 3834 (2012).

    Article  CAS  Google Scholar 

  6. Y. Ye, S. Sharick, E.M. Davis, K.I. Winey, and Y.A. Elabd: High hydroxide conductivity in polymerized ionic liquid block copolymers. ACS Macro Lett. 2, 575 (2013).

    Article  CAS  Google Scholar 

  7. P.P. Soo, B. Huang, Y.I. Jang, Y.M. Chiang, D.R. Sadoway, and A.M. Mayes: Rubbery block copolymer electrolytes for solid–state rechargeable lithium batteries. J. Electrochem. Soc. 146, 32 (1999).

    Article  CAS  Google Scholar 

  8. A.J. Meuler, M.A. Hillmyer, and F.S. Bates: Ordered network mesostructures in block polymer materials. Macromolecules 42, 7221 (2009).

    Article  CAS  Google Scholar 

  9. B.J. Dair, C.C. Honeker, D.B. Alward, A. Avgeropoulos, N. Hadjichristidis, L.J. Fetters, M. Capel, and E.L. Thomas: Mechanical properties and deformation behavior of the double gyroid phase in unoriented thermoplastic elastomers. Macromolecules 32, 8145 (1999).

    Article  CAS  Google Scholar 

  10. H. Pernot, M. Baumert, F. Court, and L. Leibler: Design and properties of co-continuous nanostructured polymers by reactive blending. Nat. Mater. 1, 54 (2002).

    Article  CAS  Google Scholar 

  11. W.-S. Young and T.H. Epps, III: Ionic conductivities of block copolymer electrolytes with various conducting pathways: sample preparation and processing considerations. Macromolecules 45, 4689 (2012).

    Article  CAS  Google Scholar 

  12. B.K. Cho, A. Jain, S.M. Gruner, and U. Wiesner: Mesophase structuremechanical and ionic transport correlations in extended amphiphilic dendrons. Science 305, 1598 (2004).

    Article  CAS  Google Scholar 

  13. G. Jo, H. Ahn, and M.J. Park: Simple route for tuning the morphology and conductivity of polymer electrolytes: one End functional group is enough. ACS Macro Lett. 2, 990 (2013).

    Article  CAS  Google Scholar 

  14. I. Villaluenga, X.C. Chen, D. Devaux, D.T. Hallinan, and N.P. Balsara: Nanoparticle-driven assembly of highly conducting hybrid block copolymer electrolytes. Macromolecules 48, 358 (2015).

    Article  CAS  Google Scholar 

  15. R.L. Weber, Y.S. Ye, A.L. Schmitt, S.M. Banik, Y.A. Elabd, and M.K. Mahanthappa: Effect of nanoscale morphology on the conductivity of polymerized ionic liquid block copolymers. Macromolecules 44, 5727 (2011).

    Article  CAS  Google Scholar 

  16. W.-F. Kuan, R. Roy, L. Rong, B.S. Hsiao, and T.H. Epps, III: Design and synthesis of network-forming triblock copolymers using tapered block interfaces. ACS Macro Lett. 1, 519 (2012).

    Article  CAS  Google Scholar 

  17. R. Roy, J.K. Park, W.-S. Young, S.E. Mastroianni, M.S. Tureau, and T.H. Epps, III: Double-gyroid network morphology in tapered diblock copolymers. Macromolecules 44, 3910 (2011).

    Article  CAS  Google Scholar 

  18. T. Pakula and K. Matyjaszewski: Copolymers with controlled distribution of comonomers along the chain.1. Structure, thermodynamics and dynamic properties of gradient copolymers. Computer simulation. Macromol. Theory Simul. 5, 987 (1996).

    Article  CAS  Google Scholar 

  19. P. Hodrokoukes, G.A. Floudas, S. Pispas, and N. Hadjichristidis: Microphase separation in normal and inverse tapered block copolymers of polystyrene and polyisoprene. 1. Phase state. Macromolecules 34, 650 (2001).

    Article  CAS  Google Scholar 

  20. J.R. Brown, S.W. Sides, and L.M. Hall: Phase behavior of tapered diblock copolymers from self-consistent field theory. ACS Macro Lett. 2, 1105 (2013).

    Article  CAS  Google Scholar 

  21. W.-F. Kuan, R. Remy, M.E. Mackay, and T.H. Epps, III: Controlled ionic conductivity via tapered block polymer electrolytes. RSC Adv. 5, 12597 (2015).

    Article  CAS  Google Scholar 

  22. W.-S. Young and T.H. Epps, III: Salt doping in PEO-containing block copolymers: counterion and concentration effects. Macromolecules 42, 2672 (2009).

    Article  CAS  Google Scholar 

  23. T.H. Epps, III, T.S. Bailey, H.D. Pham, and F.S. Bates: Phase behavior of lithium perchlorate-doped Poly(styrene-b-isoprene-b-ethylene oxide) triblock copolymers. Chem. Mater. 14, 1706 (2002).

    Article  CAS  Google Scholar 

  24. M.S. Tureau and T.H. Epps, III: Effect of partial hydrogenation on the phase behavior of Poly(isoprene-b-styrene-b-methyl methacrylate) triblock copolymers. Macromolecules 45, 8347 (2012).

    Article  CAS  Google Scholar 

  25. N. Singh, M.S. Tureau, and T.H. Epps, III: Manipulating ordering transitions in interfacially modified block copolymers. Soft Matter 5, 4757 (2009).

    Article  CAS  Google Scholar 

  26. M.B. Kossuth, D.C. Morse, and F.S. Bates: Viscoelastic behavior of cubic phases in block copolymer melts. J. Rheol. 43, 167 (1999).

    Article  CAS  Google Scholar 

  27. M.S. Tureau and T.H. Epps, III: Nanoscale networks in poly[isopreneblock- styrene-block-(methyl methacrylate)] triblock copolymers. Macromol. Rapid Commun. 30, 1751 (2009).

    Article  CAS  Google Scholar 

  28. S. Naidu, H. Ahn, J. Gong, B. Kim, and D.Y. Ryu: Phase behavior and ionic conductivity of lithium perchlorate-doped polystyrene-b-poly(2-vinylpyridine) copolymer. Macromolecules 44, 6085 (2011).

    Article  CAS  Google Scholar 

  29. L. Leibler: Theory of microphase separation in block copolymers. Macromolecules 13, 1602 (1980).

    Article  CAS  Google Scholar 

  30. A.A. Teran and N.P. Balsara: Thermodynamics of block copolymers with and without salt. J. Phys. Chem. B 118, 4 (2013).

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge AFOSR-PECASE (FA9550-09-1-0706) and National Science Foundation (DMR-1207041) for financial support. N. A. Nguyen was supported by NIST (grant no. 70NANOBIOH256) and funding provided through the Department of Materials Science and Engineering at UD. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. We thank the W. M. Keck Electron Microscopy Facility at UD for use of their TEM and cryo-microtome facilities. This publication was made possible by the Delaware COBRE program, supported by a grant from the National Institute of General Medical Sciences–NIGMS (1 P30 GM110758-01) from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas H. Epps III.

Supporting Information for

Supplementary materials

Supplementary materials

For supplementary material for this article, please visit http://dx.doi.org/10.1557/mrc.2015.19

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuan, WF., Reed, E.H., Nguyen, N.A. et al. Using tapered interfaces to manipulate nanoscale morphologies in ion-doped block polymers. MRS Communications 5, 251–256 (2015). https://doi.org/10.1557/mrc.2015.19

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.19

Navigation