Skip to main content
Log in

Novel superflexible resorcinol-formaldehyde aerogels and combining of them with aramid honeycombs

  • Research Letters
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We report a new insulation composite of aramid honeycombs filled with superflexible resorcinol-formaldehyde aerogels. Aerogels produced via a sol-gel process were dried with supercritical C02. The aerogels exhibit a high, rubber-like flexibility, due to almost zero shrinkage and networking of nanoparticles and suitably sized macropores. The high porosity of the aerogels in the range of about 95-98% leads to a low thermal conductivity about 0.037 W/mK and low bulk density of 0.05 g/cm3. The filling of light and stiff aramid honeycombs with these flexible aerogels results in a composite with decreased thermal conductivity and modified mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Table I

Similar content being viewed by others

References

  1. S.S. Kistler: Coherent expanded aerogels. J. Phys. Chem. 36, 52–46 (1932).

    Article  CAS  Google Scholar 

  2. R. Pekala: Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 24, 3221–3227 (1989).

    Article  CAS  Google Scholar 

  3. S. Mulik and Ch. Sotiriou-Leventis: Resorcinol - formaldehyde aerogels, in Aerogels Handbook, edited by M.A. Aegerter, N. Leventis and M.M. Koebel (Springer, New York, 2011), p. 215.

    Chapter  Google Scholar 

  4. C. Jin: Aerogels super-thermal insulation materials by Nano Hi-tech, in Aerogels Handbook, edited by M.A. Aegerter, N. Leventis and M.M. Koebel (Springer, New York, 2011), p. 865.

    Chapter  Google Scholar 

  5. R. Mendenhall: American Aerogel Corporation: organic aerogel commercialization, in Aerogels Handbook, edited by M.A. Aegerter, N. Leventis and M.M. Koebel (Springer, New York, 2011), p. 857.

    Chapter  Google Scholar 

  6. L. Ratke and B. Milow: Aerogels for foundary applications, in Aerogels Handbook, edited by M.A. Aegerter, N. Leventis and M.M. Koebel (Springer, New York, 2011), p. 763.

    Chapter  Google Scholar 

  7. J. Shen and D.Y. Guan: Preparation and application of carbon aerogels, In Aerogels Handbook, edited by M.A. Aegerter, N. Leventis and M.M. Koebel (Springer, New York, 2011), p. 813.

    Chapter  Google Scholar 

  8. K. Kanamori, M. Aizawa, K. Nakanishi and T. Hanada: New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties. Adv. Mater. 19, 1589–1593 (2007).

    Article  CAS  Google Scholar 

  9. M. Schwan and L. Ratke: Flexibilisation of resorcinol formaldehyde aerogels. J. Mater. Chem. A 1, 13462–13468 (2013).

    Article  CAS  Google Scholar 

  10. T. Bitzer: Honeycomb Technology (Chapman & Hall, London, 1997), p. 2.

    Book  Google Scholar 

  11. L.J. Gibson and M.F. Ashby. Cellular Solids: Structure and Properties (Cambridge University Press, Cambridge, 1997), p. 175.

    Book  Google Scholar 

  12. F.K. Abd El-Sayed, R. Jones and I.W. Burgess: Atheoretical approach to the deformation of honeycomb based composite materials. Composites 145, 341–360 (1997).

    Google Scholar 

  13. R.V. Beblo, J.P. Puttmann, N.E. DeLeon, J.J. Joo and G.W. Reich: SMP filled honeycombs as a reconfigurable skin: model and experimental validation, in Proc. of the 19th Int. Conf. on Composite Materials, Montreal, July-August, 2013, pp. 1, 9.

    Google Scholar 

  14. R. Jhaver and H. Tippur: Characterization and modeling of compression behavior of syntactic foam filled honeycombs. J. Reinf. Plast. Comp. 29, 3185–3196 (2010).

    Article  CAS  Google Scholar 

  15. G. Murray, F. Gandhi and E. Hayden: Polymer filled honeycombs to achieve a structural material with appreciable damping. J. Intell. Mater. Syst. Struct. 23, 703–718 (2012).

    Article  CAS  Google Scholar 

  16. C. Resewski and W. Buchgraber: Properties of new polyimide foams and polyimide filled honeycomb composites. Mater. Wiss. Werkstofftech. 34, 365–369 (2003).

    Article  CAS  Google Scholar 

  17. S.C. Joshi: Low velocity impact performance of aerogel filled sandwich composites, in Proc. of the 16th Int. Conf. on Composite Structures, Porto, June, 2011.

    Google Scholar 

  18. http://www.aerogel.com/ (accessed April 25, 2014).

  19. http://glassmagazine.com/article/commercial/most-innovative-energy-e_cient-glass-product-106654 (accessed April 25, 2014).

  20. A. Knop and L.A. Pilato: Phenolic Resins (Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1985), p. 175.

    Book  Google Scholar 

  21. HexWeb™ honeycomb attributes and properties. Hexcel, 1999.

  22. Kevlar Aramid Fiber, Technical Guide, Table 11-1, DuPont Advanced Fiber Systems, Richmond, VA, USA.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Schwan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwan, M., Milow, B. & Ratke, L. Novel superflexible resorcinol-formaldehyde aerogels and combining of them with aramid honeycombs. MRS Communications 4, 177–181 (2014). https://doi.org/10.1557/mrc.2014.31

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2014.31

Navigation