Skip to main content
Log in

Graphene oxide film as a template for the creation of three-dimensional lamellar metal oxides and reduced graphene oxide/metal oxide hybrids

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Here we report a general method for the synthesis of layered inorganic nanocrystalline materials using graphene oxide (GO) film as the template. Free-standing three-dimensional (3D) lamellar ZnO, α-Fe2O3, and reduced GO/ZnO hybrid structures were synthesized as examples. Such layered structures could also be exfoliated to obtain 2D assembled nanocrystal microsheets. The abundant nucleation sites on the GO surface and the compact stacking of GO platelets made it possible to tightly control metal oxide crystal size (≈15 nm), alter preferential crystal growth direction, and assemble the nanocrystals into sheets, as confirmed by multiple characterization techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. C.F. Blanford, H.W. Yan, R.C. Schroden, M. Al-Daous and A. Stein: Gems of chemistry and physics: macroporeus metal oxides with 3D order. Adv. Mater. 13, 401 (2001).

    Article  CAS  Google Scholar 

  2. J.J.E. Moreau, L. Vellutini, M.W.C. Man, C. Bied, J.L. Bantignies, P. Dieudonné and J.L. Sauvajol: Self-organized hybrid silica with long-range ordered lamellar structure. J. Am. Chem. Soc. 123, 7957 (2001).

    Article  CAS  Google Scholar 

  3. V. Polshettiwar, B. Baruwati and R.S. Varma: Self-assembly of metal oxides into three-dimensional nanostructures: synthesis and application in catalysis. ACS Nano 3, 728 (2009).

    Article  CAS  Google Scholar 

  4. K.E. Shopsowitz, A. Stahl, W.Y. Hamad and M.J. MacLachlan: Hard tern-plating of nanocrystalline titanium dioxide with chiral nematic ordering. Angew. Chem. Int. Ed. Engl. 51, 6886 (2012).

    Article  CAS  Google Scholar 

  5. D.J. Milliron, R. Buonsanti, A. Llordes and B.A. Helms: Constructing functional mesostructured materials from colloidal nanocrystal building blocks. Ace. Chem. Res. 47, 236 (2014).

    Article  CAS  Google Scholar 

  6. K.J.C. van Bommel, A. Friggeri and S. Shinkai: Organic templates for the generation of inorganic materials. Angew. Chem. Int. Ed. Engl. 42, 980 (2003).

    Article  Google Scholar 

  7. A.-H. Lu and F. Schiith: Nanocasting: a versatile strategy for creating nanostructured porous materials. Adv. Mater. 18, 1793 (2006).

    Article  CAS  Google Scholar 

  8. F. Cheng, Z. Tao, J. Liang and J. Chen: Template-directed materials for rechargable lithiumion batteries. Chem. Mater. 20, 667 (2008).

    Article  CAS  Google Scholar 

  9. F. Jiao, A. Harrison, J.-C. Jumas, A.V. Chadwick, W. Kockelmann and P.G. Bruce: Ordered mesoporous Fe203 with crystalline walls. J. Am. Chem. Soc. 128, 5468 (2006).

    Article  CAS  Google Scholar 

  10. D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen and R.S. Ruoff: Preparation and characterization of graphene oxide paper. Nature 448, 457 (2007).

    Article  CAS  Google Scholar 

  11. D.R. Dreyer, S. Park, C.W. Bielawski and R.S. Ruoff: The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228 (2010).

    Article  CAS  Google Scholar 

  12. J.L. Gunjakar, T.W. Kim, H.N. Kim, I.Y. Kim and S.J. Hwang: Mesoporous layer-by-layer ordered nanohybrids of layered double hydroxide and layered metal oxide: highly active visible light photocatalysts with improved chemical stability. J. Am. Chem. Soc. 133, 14998 (2011).

    Article  CAS  Google Scholar 

  13. S.I. Shin, A. Go, I.Y. Kim, J.M. Lee, Y. Lee and S.J. Hwang: A beneficial role of exfoliated layered metal oxide nanosheets in optimizing the electrocatalytic activity and pore structure of Pt-reduced graphene oxide nanocomposites. Energy Environ. Sci. 6, 608 (2013).

    Article  CAS  Google Scholar 

  14. Y. Liang, Y. Li, H. Wang and H. Dai: Strongly coupled inorganic/nanocar-bon hybrid materials for advanced electrocatalysis. J. Am. Chem. Soc. 135, 2013 (2013).

    Article  CAS  Google Scholar 

  15. C.J. Bruns, D.J. Herman, J.B. Minuzzo, J.A. Lehrman and S.I. Stupp: Rationalizing molecular design in the electrodeposition of anisotropic lamerllar nanostructures. Chem. Mater. 25, 4330 (2013).

    Article  CAS  Google Scholar 

  16. W.S. Hummers and R.E. Offeman: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

  17. X. Gao and X.S. Tang: Effective reduction of graphene oxide thin films by a fluorinating agent: diethylaminosulfur trifluoride. Carbon 76, 133 (2014).

    Article  CAS  Google Scholar 

  18. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen and R.S. Ruoff: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558 (2007).

    Article  CAS  Google Scholar 

  19. M. Mazloumi, H.S. Mandal and X.S. Tang: Fabrication of optical device arrays using patterned growth of ZnO nanostructures. IEEE Trans. Nanotechnol. 11, 444 (2012).

    Article  Google Scholar 

  20. L. Vayssieres, K. Keis, S.-E. Lindquist and A. Hagfeldt: Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO. J. Phys. Chem. B 105, 3350 (2001).

    Article  CAS  Google Scholar 

  21. Y.K. Tseng, C.J. Huang, H.M. Cheng, I.N. Lin, K.S. Liu and I.C. Chen: Characterization and field-emission properties of needle-like zinc oxide nanowires grown vertically on conductive zinc oxide films. Adv. Funct. Mater. 13, 811 (2003).

    Article  CAS  Google Scholar 

  22. B.D. Cullity: Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesley, Boston, MA, USA, 1978).

    Google Scholar 

  23. S. Cho, S.H. Jung and K.H. Lee: Morphology-controlled growth of ZnO nanostructures using microwave irradiation: from basic to complex structures. J. Phys. Chem. C 112, 12769 (2008).

    Article  CAS  Google Scholar 

  24. M. Mazloumi, S. Shadmehr, Y. Rangom, L.F. Nazar and X.S. Tang: Fabrication of three-dimensional carbon nanotube and metal oxide hybrid mesoporous architectures. ACS Nano 7, 4281 (2013).

    Article  CAS  Google Scholar 

  25. M.F. El-Kady, V. Strong, S. Dubin and R.B. Kaner: Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335, 1326 (2012).

    Article  CAS  Google Scholar 

  26. I.K. Moon, J. Lee, R.S. Ruoff and H. Lee: Reduced graphene oxide by chemical graphitization. Nat. Commun. 1, 73 (2010).

    Article  Google Scholar 

  27. J. Chen, L. Xu, W. Li and X. Gou: Alpha-Fe203 nanotubes in gas sensor and lithium-ion battery applications. Adv. Mater. 17, 582 (2005).

    Article  CAS  Google Scholar 

  28. J. Lee, M.C. Orilall, S.C. Warren, M. Kamperman, F.J. DiSalvo and U. Wiesner: Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores. Nat. Mater. 7, 222 (2008).

    Article  CAS  Google Scholar 

  29. Y. Xiaand R. Mokaya: Hollow spheres of crystalline porous metal oxides: a generalized synthesis route via nanocasting with mesoporous carbon hollow shells. J. Mater. Chem. 15, 3126 (2005).

    Article  Google Scholar 

  30. Y. Wang, J.Y. Lee and H.C. Zeng: Polycrystalline Sn02 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application. Chem. Mater. 17, 3899 (2005).

    Article  CAS  Google Scholar 

  31. W.Y. Li, L.N. Xu and J. Chen: C0P3O4 nanomaterials in lithiumion batteries and gas sensors. Adv. Funct. Mater. 2005, 15, 851.

    Google Scholar 

Download references

Acknowledgments

The authors thank Professor Linda F. Nazar for providing access to the XRD instrument and Ms. Xinyun Wu for the help with TEM characterization. The research was supported by a Discovery grant from the Natural Science and Engineering Research Council (NSERC) of Canada and an infrastructure grant from Canada Foundation for Innovation (CFI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowu (Shirley) Tang.

Supplementary materials

Supplementary materials

For supplementary material for this article, please visit http://dx.doi.org/10.1557/mrc.2014.30

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Mazloumi, M., Cheung, L. et al. Graphene oxide film as a template for the creation of three-dimensional lamellar metal oxides and reduced graphene oxide/metal oxide hybrids. MRS Communications 4, 171–175 (2014). https://doi.org/10.1557/mrc.2014.30

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2014.30

Navigation