Skip to main content
Log in

Continuous dynamic analysis: evolution of elastic properties with strain

  • Research Letters
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Mechanical strain triggers changes in inherent molecular structure, especially in polymeric and biological materials. Unlike conventional techniques, we demonstrate a novel dynamic mechanical characterization method to study the effect of this structural evolution with strain on elastic properties. During tensile characterization of small diameter fibers, we quantitatively measured the viscoelastic properties as a continuous function of strain. While this approach is useful to characterize the elastic properties of metal microwires independent of applied strain, it is extremely important for fundamental understanding of molecular changes and their effect on the viscoelastic properties in materials such as polymer fiber and spider silk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  1. G. Khatibi, A. Betzwar-Kotas, V. GrÖGer, and B. Weiss: A study of the mechanical and fatigue properties of metallic microwires. Fatigue Fract. Eng. Mater. Struct. 28, 723–733 (2005).

    Article  CAS  Google Scholar 

  2. F.D. Danaher, J.J. Williams, D.R.P. Singh, L. Jiang, and N. Chawla: Tensile and fatigue behavior of Al-1Si wire used in wire bonding. J. Electron. Mater. 40, 1422–1427 (2011).

    Article  CAS  Google Scholar 

  3. Z. Ma, M. Kotaki, R. Inai, and S. Ramakrishna: Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng. 11, 101–109 (2005).

    Article  Google Scholar 

  4. V. Leung and F. Ko: Biomedical applications of nanofibers. Polym. Adv. Technol. 22, 350–365 (2011).

    Article  CAS  Google Scholar 

  5. C.Y. Hayashi, N.H. Shipley, and R.V. Lewis: Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. Int. J. Biol. Macromol. 24, 271–275 (1999).

    Article  CAS  Google Scholar 

  6. Z. Shao and F. Vollrath: Materials: surprising strength of silkworm silk. Nature 418, 741–741 (2002).

    Article  CAS  Google Scholar 

  7. M.A. Meyers, P.-Y. Chen, A.Y.-M. Lin, and Y. Seki: Biological materials: structure and mechanical properties. Progr. Mater. Sci. 53, 1–206 (2008).

    Article  CAS  Google Scholar 

  8. Y. Termonia: Molecular modeling of spider silk elasticity. Macromolecules 27, 7378–7381 (1994).

    Article  CAS  Google Scholar 

  9. F. Vollrath: Strength and structure of spiders’ silks. Rev. Mol. Biotechnol. 74, 67–83 (2000).

    Article  CAS  Google Scholar 

  10. E.P.S. Tan, S.Y. Ng, and C.T. Lim: Tensile testing of a single ultrafine polymeric fiber. Biomaterials 26, 1453–1456 (2005).

    Article  CAS  Google Scholar 

  11. Z. Chen, B. Wei, X. Mo, C.T. Lim, S. Ramakrishna, and F. Cui: Mechanical properties of electrospun collagen–chitosan complex single fibers and membrane. Mater. Sci. Eng. C 29, 2428–2435 (2009).

    Article  CAS  Google Scholar 

  12. C. Lechat, A.R. Bunsell, P. Davies, and A. Piant: Mechanical behaviour of polyethylene terephthalate & polyethylene naphthalate fibres under cyclic loading. J. Mater. Sci. 41, 1745 (2006).

    Article  CAS  Google Scholar 

  13. J.M. Schultz Polymer Materials Science. Ch. 11 (Prentice-Hall, New Jersey, 1974).

    Google Scholar 

  14. S. Toki, T. Fujimaki, and M. Okuyama: Strain-induced crystallization of natural rubber as detected real-time by wide-angle X-ray diffraction technique. Polymer 41, 5423–5429 (2000).

    Article  CAS  Google Scholar 

  15. S. Ran, D. Fang, X. Zong, B.S. Hsiao, B. Chu, and P.M. Cunniff: Structural changes during deformation of Kevlar fibers via on-line synchrotron SAXS/WAXD techniques. Polymer 42, 1601–1612 (2001).

    Article  CAS  Google Scholar 

  16. G. Washer, T. Brooks, and R. Saulsberry: Characterization of Kevlar using Raman spectroscopy. J. Mater. Civil Eng. 21, 226–234 (2009).

    Article  CAS  Google Scholar 

  17. S.W. Cranford, A. Tarakanova, N.M. Pugno, and M.J. Buehler: Nonlinear material behaviour of spider silk yields robust webs. Nature 482, 72–76 (2012).

    Article  CAS  Google Scholar 

  18. W.C. Oliver and J.B. Pethica: method for continuous determination of the elastic stiffness of contact between two bodies. US Patent (1988).

    Google Scholar 

  19. J. Hay, P. Agee, and E. Herbert: Continuous stiffness measurement during instrumented indentation testing. Exp. Tech. 34, 86–94 (2010).

    Article  Google Scholar 

  20. T.A. Blackledge and C.Y. Hayashi: Silken toolkits: biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775). J. Exp. Biol. 209, 2452–2461 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Basu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu, S., Hay, J.L., Swindeman, J.E. et al. Continuous dynamic analysis: evolution of elastic properties with strain. MRS Communications 4, 25–29 (2014). https://doi.org/10.1557/mrc.2013.49

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2013.49

Navigation