Skip to main content
Log in

Reversible dislocation motion and microcracking in plastically anisotropic solids under cyclic spherical nanoindentation

  • Research Letters
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Recently, fully reversible dislocation motion was postulated to result in hysteretic nanoindentation load–displacement loops in plastically anisotropic solids. Since microcracking can also result in hysteretic loops, here we define a new parameter, reversible displacement (RD) that can differentiate between the two. For C-plane LiTaO3 surfaces and five other plastically anisotropic solids, the RD values either increase initially or remain constant with cycling. In contradistinction, for glass and A-plane ZnO surfaces, where energy dissipation is presumably due to microcracking or irreversible dislocation pileups, respectively, the RD values decreased continually with cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.

Similar content being viewed by others

References

  1. F.C. Frank and A.N. Stroh: On the theory of kinking. Proc. Phys. Soc. 65, 811–821 (1952).

    Article  Google Scholar 

  2. M.W. Barsoum, A. Murugaiah, S.R. Kalidindi, and T. Zhen: Kinking nonlinear elastic solids, nanoindentations, and geology. Phys. Rev. Lett. 92, 255508 (2004).

    Article  CAS  Google Scholar 

  3. A.G. Zhou, M.W. Barsoum, S. Basu, S.R. Kalidindi, and T. El-Raghy: Incipient and regular kink bands in fully dense and 10 vol.% porous Ti2AlC. Acta Mater. 54, 1631–1639 (2006).

    Article  CAS  Google Scholar 

  4. M.W. Barsoum, T. Zhen, S.R. Kalidindi, M. Radovic, and A. Murugaiah: Fully reversible, dislocation-based compressive deformation of Ti3SiC2 to 1 GPa. Nat. Mater. 2, 107–111 (2003).

    Article  CAS  Google Scholar 

  5. S. Basu, M.W. Barsoum: Deformation micromechanisms of ZnO single crystals as determined from spherical nanoindentation stress–strain curves. J. Mater. Res. 22, 2470–2477 (2007).

    Article  CAS  Google Scholar 

  6. R. Buchs, S. Basu, O.A. Elshrief, R. Coward, and M.W. Barsoum: Spherical nanoindentation and Vickers microhardness study of the deformation of poled BaTiO3 single crystals. J. Appl. Phys. 105, 093540 (2009).

    Article  Google Scholar 

  7. S. Basu, M.W. Barsoum, and S.R. Kalidindi: Sapphire: a kinking nonlinear elastic solid. J. Appl. Phys. 99, 063501 (2006).

    Article  Google Scholar 

  8. S. Basu, A.G. Zhou, and M.W. Barsoum: Reversible dislocation motion under contact loading in LiNbO3 single crystal. J. Mater. Res. 23, 1334–1338 (2008).

    Article  CAS  Google Scholar 

  9. B. Anasori, K.E. Sickafus, I.O. Usov, and M.W. Barsoum: Spherical nanoindentation study of the deformation micromechanisms of LiTaO3 single crystals J. Appl. Phys. 110, 023516 (2011).

    Article  Google Scholar 

  10. A.G. Zhou, S. Basu, and M.W. Barsoum: Kinking nonlinear elasticity, damping and microyielding of hexagonal close-packed metals. Acta Mater. 56, 60–67 (2008).

    Article  CAS  Google Scholar 

  11. A.G. Zhou, D. Brown, S. Vogel, O. Yeheskel, and M.W. Barsoum: On the kinking nonlinear elastic deformation of cobalt. Mater. Sci. Eng. A 527, 4664–4673 (2010).

    Article  Google Scholar 

  12. M.W. Barsoum, A. Murugaiah, S.R. Kalidindi, T. Zhen, and Y. Gogotsi: Kink bands, nonlinear elasticity and nanoindentations in graphite. Carbon 42, 1435–1445 (2004).

    Article  CAS  Google Scholar 

  13. S. Basu and M.W. Barsoum: On spherical nanoindentations, kinking nonlinear elasticity of mica single crystals and their geological implications. J. Struct. Geol. 31, 791–801 (2009).

    Article  Google Scholar 

  14. A. Richter, B. Wolf, M. Nowicki, R. Smith, I.O. Usov, J.A. Valdez, and K. Sickafus: Multi-cycling nanoindentation in MgO single crystals before and after ion irradiation. J. Phys. D, Appl. Phys. 39, 3342–3349 (2006).

    Article  CAS  Google Scholar 

  15. W.C. Oliver and G.M. Pharr: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).

    Article  CAS  Google Scholar 

  16. V.A. Coleman, J.E. Bradby, C. Jagadish, and M.R. Phillips: A comparison of the mechanical properties and the impact of contact induced damage in a- and c- Axis ZnO single crystals. MRS Online Proc. Libr. 957, 0957-K07–17 (2006).

  17. T. Saraswati, T. Sritharan, S. Mhaisalkar, C.D. Breach, and F. Wulff: Cyclic loading as an extended nanoindentation technique. Mater. Sci. Eng. A 423, 14–18 (2006).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Army Research Office (grant no. W911NF-11-01-0525).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Anasori.

Supplementary Material

Supplementary materials

Supplementary materials

For supplementary material for this article, please visit http:// dx.doi.org/10.1557/mrc.2013.39

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anasori, B., Barsoum, M.W. Reversible dislocation motion and microcracking in plastically anisotropic solids under cyclic spherical nanoindentation. MRS Communications 3, 245–248 (2013). https://doi.org/10.1557/mrc.2013.39

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2013.39

Navigation