Skip to main content
Log in

Field-assisted selective-melt sintering: a novel approach to high-density ceramics

  • Research Letters
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Electrical fields can be used to heat selectively dislocations and grain boundaries to a much higher temperature compared with the bulk. This selective joule heating, if uncontrolled by limiting the current flow, can lead to melting of grain boundaries and sintering of poly- and nanocrystalline materials close to the theoretical density in a much shorter time due to fast diffusivities of the order of 10−4 to 10−5 cm2/s in the liquid. I refer to this sintering mode as selective-melt sintering, which can occur at lower overall temperatures with much lower energy consumption compared with conventional sintering involving solid-state diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. J. Narayan, R.A. Weeks, and E. Sonder: Aggregation of defects and thermal-electric breakdown in MgO. J. Appl. Phys. 49, 5977–5981 (1978).

    Article  CAS  Google Scholar 

  2. R.A. Weeks, J. Narayan, and E. Sonder: Electric breakdown in MgO crystals at elevated temperature. Phys. Stat. Solidi 70, 631–639 (1982).

    Article  CAS  Google Scholar 

  3. E. Sonder, K.F. Kelton, J.C. Pigg, and R.A. Weeks: The effect of electric current on the conductivity of MgO single crystals at temperatures above 1300 K. J. Appl. Phys. 49, 5971–5976 (1978).

    Article  CAS  Google Scholar 

  4. K.L. Tsang, Y. Chen: Suppression of dielectric breakdown in MgO crystals at high temperatures by impurity doping. J. Appl. Phys. 54, 4531–4535 (1983).

    Article  CAS  Google Scholar 

  5. D. Yang and H. Conrad: Influence of an electric field on the superplastic deformation of 3Y-TZP. Scr. Mater. 36, 1431–1435 (1997).

    Article  CAS  Google Scholar 

  6. D. Yang and H. Conrad: Influence of an electric field on grain growth in extruded NaCl. Scr. Mater. 38, 1443–1448 (1998).

    Article  CAS  Google Scholar 

  7. H. Conrad and D. Yang: Influence of an applied dc electric field on the plastic deformation kinetics of oxide ceramics. Philos. Mag. 90, 1141–1157 (2010).

    Article  CAS  Google Scholar 

  8. H. Conrad and D. Yang: Dependence of the sintering rate and related grain size of yttria-stabilized polycrystalline zirconia (3Y-TZP) on the strength of an applied DC electric field. Mater. Sci. Eng. A 528, 8523–8529 (2011).

    Article  CAS  Google Scholar 

  9. J.R. Groza and A. Zavaliangos: Sintering activation by external electrical field. Mater. Sci. Eng. A 287, 171–177 (2000).

    Article  Google Scholar 

  10. Z.A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi: The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J. Mater. Sci. 41, 763–777 (2006).

    Article  CAS  Google Scholar 

  11. S.H. Risbud, J.R. Groza, and M.J. Kim: Clean grain boundaries in aluminium nitride ceramics densified without additives by a plasma-activated sintering process. Philos. Mag. 69, 525–533 (1994).

    Article  CAS  Google Scholar 

  12. J. Wan, M.J. Gasch, and A.K. Mukherjee: Silicon nitride–silicon carbide nancocomposites fabricated by electric-field-assisted sintering. J. Am. Ceram. Soc. 86, 526–528 (2003).

    Article  CAS  Google Scholar 

  13. R. Raj, M. Cologna, and J.S.C. Francis: Influence of externally imposed and internally generated electrical fields on grain growth, diffusional creep, sintering and related phenomena in ceramics. J. Am. Ceram. Soc. 94, 1941–1965 (2011).

    Article  CAS  Google Scholar 

  14. M. Cologna, J.S.C. Francis, and R. Raj: Field assisted and flash sintering of alumina and its relationship to conductivity and MgO-doping. J. Eur. Ceram. Soc. 31, 2827–2837 (2011).

    Article  CAS  Google Scholar 

  15. J.S.C. Francis and R. Raj: Flash-sinterforging of nanograin zirconia: field assisted sintering and superplasticity. J. Am. Ceram. Soc. 9, 1–9 (2011).

    Google Scholar 

  16. M. Cologna, B. Rashkova, and R. Raj: Flash sintering of nanograin zirconia in <5 s at 850°C. J. Am. Ceram. Soc. 93, 3557–3559 (2010).

    Article  Google Scholar 

  17. J. Narayan: New mechanism for electric-field assisted processing and flash sintering of materials. Scrip. Mater. 69, 107–111 (2013). (Invited Viewpoint Paper).

    Article  CAS  Google Scholar 

  18. J. Narayan: Grain growth model for electric-field assisted processing and flash sintering of materials. Scrip. Mater. 68, 785–788 (2013).

    Article  CAS  Google Scholar 

  19. S. Mal, T-H. Yang, P. Gupta, J.T. Prater, and J. Narayan: Thin film epitaxy and magnetic properties of STO/TiN buffered ZnO on Si (001) substrates. Acta Mater. 59, 2526–2534 (2011).

    Article  CAS  Google Scholar 

  20. P. Gupta, T. Dutta, S. Mal, and J. Narayan: Controlled p-type to n-type conductivity transformation in NiO thin films by ultraviolet-laser irradiation. J. Appl. Phys. 111, 013706–1–7 (2012).

    Article  Google Scholar 

  21. J. Narayan: Physical properties of a<100> dislocations in magnesium oxide. J. Appl. Phys. 57, 2703–2708 (1985).

    Article  CAS  Google Scholar 

  22. J. Narayan and O.W. Holland: Characteristics of ion implantation damage and annealing phenomena in semiconductors. J. Electrochem. Soc. 131, 2651–2662 (1984).

    Article  CAS  Google Scholar 

  23. J. Narayan, Y. Chen, and R.M. Moon: Nickel colloids in reduced nickel-doped magnesium oxide. Phys. Rev. Lett. 46, 1491–1494 (1981).

    Article  CAS  Google Scholar 

  24. J.P. Hirth and J. Loathe: Theory of Dislocations (McGraw–Hill, New York, NY, 2002).

    Google Scholar 

  25. C.W. White, J. Narayan, and R.T. Young: Laser annealing of ion implanted semiconductors. Science 204, 461–468 (1979).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is pleased to acknowledge useful discussions and comments on the manuscript by Professor Hans Conrad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Narayan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narayan, J. Field-assisted selective-melt sintering: a novel approach to high-density ceramics. MRS Communications 3, 139–143 (2013). https://doi.org/10.1557/mrc.2013.27

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2013.27

Navigation