Skip to main content
Log in

Rapid synthesis of high-performance thermoelectric materials directly from natural mineral tetrahedrite

  • Research Letters
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Tetrahedrite-structure compounds, of general composition Cu12−xZnxSb4S13, are an earth-abundant alternative to PbTe for thermoelectric power generation applications in the intermediate high-temperature range (300–400°C). Tetrahedrites can be synthesized in the laboratory using a multi-step process involving long annealing times. However, this compound also exists in natural mineral form, and, in fact, is one of the most abundant copper-bearing minerals in the world. We show here that by simply mixing natural mineral tetrahedrite with pure elements through high-energy ball milling without any further heat treatment, we can successfully obtain material with figure of merit near unity at 723 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. G.J. Snyder and E.S. Toberer: Complex thermoelectric materials. Nat. Mater. 7, 105 (2008).

    Article  CAS  Google Scholar 

  2. K. Biswas, J. He, I.D. Blum, C-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis: High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414 (2012).

    Article  CAS  Google Scholar 

  3. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G.J. Snyder: Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66 (2011).

    Article  CAS  Google Scholar 

  4. D. Bilc, S.D. Mahanti, E. Quarez, K. Hsu, R. Pcionek, and M.G. Kanatzidis: Resonant states in the electronic structure of the high performance thermoelectrics AgPbmSbTe2+m: the role of Ag–Sb microstructures. Phys. Rev. Lett. 93, 146403 (2004).

    Article  Google Scholar 

  5. J.P. Heremans, C.M. Thrush, and D.T. Morelli: Thermopower enhancement in lead telluride nanostructures. Phys. Rev. B 70, 115334 (2004).

    Article  Google Scholar 

  6. D.T. Morelli, V. Jovovic, and J.P. Heremans: Intrinsically minimum thermal conductivity in cubic I–V–VI2 semiconductors. Phys. Rev. Lett. 101, 035901 (2008).

    Article  CAS  Google Scholar 

  7. A. Pfitzner, M. Evain, and V. Petricek: Cu12Sb4S13: a temperature-dependent structure investigation. Acta Cryst. B53, 337 (1997).

    Article  CAS  Google Scholar 

  8. M.L. Johnson and R. Jeanloz: A Brillouin-zone model for compositional variation in tetrahedrite. Am. Mineral. 68, 220 (1983).

    CAS  Google Scholar 

  9. E.J. Skoug and D.T. Morelli: Role of lone-pair electrons in producing minimum thermal conductivity in nitrogen-group chalcogenide compounds. Phys. Rev. Lett. 107, 235901 (2011).

    Article  Google Scholar 

  10. M.D. Nielson, V. Ozolins, and J.P. Heremans: Lone pair electrons minimize lattice thermal conductivity. Energy Environ. Sci. 6, 570 (2013).

    Article  Google Scholar 

  11. X. Lu, D.T. Morelli, Y. Xia, F. Zhou, V. Ozolins, H. Chi, X. Zhou, and C. Uher: High performance thermoelectricity in earth-abundant compound based natural mineral tetrahedrites. Adv. Energy Mater. 3, 342 (2013).

    Article  CAS  Google Scholar 

  12. X. Lu and D.T. Morelli: Natural mineral tetrahedrite as a direct source of the thermoelectric materials. Phys. Chem. Chem. Phys. 15, 5762 (2013).

    Article  CAS  Google Scholar 

  13. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R.W. Gould, D.C. Cuff, M.Y. Tang, M.S. Dresselhaus, G. Chen, and Z. Ren: Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett. 8, 4670 (2008).

    Article  CAS  Google Scholar 

  14. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634 (2008).

    Article  CAS  Google Scholar 

  15. J. Li, J. Sui, Y. Pei, C. Barretean, D. Berardan, N. Dragoe, W. Cai, J. He, and L. Zhao: A high thermoelectric figure of merit <1 in Ba heavily doped BiCuSeO oxyselenides. Energy Environ. Sci. 5, 8543 (2012).

    Article  CAS  Google Scholar 

  16. A. Zevalkink, E.S. Toberer, W.G. Zeier, E. Flage-Larsen, and G.J. Snyder: Ca3AlSb3: an inexpensive, non-toxic thermoelectric material for waste heat recovery. Energy Environ. Sci. 4, 510 (2011).

    Article  CAS  Google Scholar 

  17. R. Jeanloz and M.L. Johnson: A note on the bonding, optical spectrum and composition of tetrahedrite. Phys. Chem. Miner. 11, 52 (1984).

    Article  CAS  Google Scholar 

  18. S.K. Bux, R.G. Blair, P.K. Gogna, H. Lee, G. Chen, M.S. Dresselhaus, R.B. Kaner, and J.-P. Fleurial: Nanostructured bulk Silicon as an effective thermoelectric material. Adv. Funct. Mater. 19, 2445 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported as part of the "Revolutionary Materials for Solid State Energy Conversion," an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award #DE-SC0001054. The authors also would like to thank Professor Eldon Case and Xiaofeng Fan for the grain size analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald T. Morelli.

Supplementary materials

Supplementary materials

For supplementary material for this article, please visit {rs|http://dx.doi.org/10.1557/mrc.2013.26|url|}

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, X., Morelli, D.T. Rapid synthesis of high-performance thermoelectric materials directly from natural mineral tetrahedrite. MRS Communications 3, 129–133 (2013). https://doi.org/10.1557/mrc.2013.26

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2013.26

Navigation