Skip to main content
Log in

Curvature drastically changes diffusion properties of Li and Na on graphene

  • Research Letters
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We present a comparative ab initio study of surface diffusion of Li and Na on planar and curved graphene. The barrier for diffusion is ~0.1 eV lower for Na than for Li, and is changed significantly by curvature. The maximum change is similar for Li for Na, of the order of ±0.1 eV on the convex and concave sides. The difference in barrier for metal atoms adsorbed on the concave and convex sides can reach 0.2 eV. This modulation of the diffusion barrier by curvature is therefore expected to affect significantly the rate capability of graphene-based anodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Table 1
Figure 4

Similar content being viewed by others

References

  1. M.M. Thackeray, C. Wolverton, and E.D. Isaacs: Electrical energy storage for transportation–approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 5, 7854 (2012).

    Article  CAS  Google Scholar 

  2. E. Barbour, I.A. Grant Wilson, I.G. Bryden, P.G. McGregor, P.A. Mulheran, and P.J. Hall: Towards an objective method to compare energy storage technologies: development and validation of a model to determine the upper boundary of revenue available from electrical price arbitrage. Energy Environ. Sci. 5, 5425 (2012).

    Article  Google Scholar 

  3. A.K. Shukla and T.P. Kumar: Lithium economy: will it get the electric traction?J. Phys. Chem. Lett. 4, 551 (2013).

    Article  CAS  Google Scholar 

  4. X. Fan, W.T. Zheng, and J.-L. Kuo: Adsorption and diffusion of Li on pristine and defective graphene. ACS Appl. Mater. Interfaces 4, 2432 (2012).

    Article  CAS  Google Scholar 

  5. L.-J. Zhou, Z.F. Hou, and L-.M. Wu: First-principles study of lithium adsorption and diffusion on graphene with point defects. J. Phys. Chem. C 116, 21780 (2012).

    Article  CAS  Google Scholar 

  6. C. Uthaisar and V. Barone: Edge effects on the characteristics of Li diffusion in graphene. Nano Lett. 10, 28238 (2010).

    Article  Google Scholar 

  7. Y. Fang, Y. Lv, R. Che, H. Wu, X. Zhang, D. Gu, G. Zheng, and D. Zhao: Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage. J. Am. Chem. Soc. 135, 1524 (2013).

    Article  CAS  Google Scholar 

  8. B. Luo, Y. Fang, B. Wang, J. Zhou, H. Song, and L. Zhi: Two dimensional graphene-SnS2 hybrids with superior rate capability for lithium ion storage. Energy Environ. Sci. 5, 5226 (2012).

    Article  CAS  Google Scholar 

  9. Y. Gu, Y. Xu, and Y. Wang: Graphene-wrapped CoS nanoparticles for high-capacity lithium-ion storage. ACS Appl. Mater. Interfaces 5, 801 (2013).

    Article  CAS  Google Scholar 

  10. J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S.N. Novoselov, T.J. Booth, and S. Roth: The structure of suspended graphene. Nature 446, 60 (2007).

    Article  CAS  Google Scholar 

  11. P. Lian, X. Zhu, S. Liang, Z. Li, W. Yang, and H. Wanga: Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim. Acta 55, 3909 (2010).

    Article  CAS  Google Scholar 

  12. P. Guo, H. Song, and X. Chen: Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochem. Commun. 11, 1320 (2009).

    Article  CAS  Google Scholar 

  13. V. Tozzini and V. Pellegrini: Reversible hydrogen storage by controlled buckling of graphene layers. J. Phys. Chem. C 115, 25523 (2011).

    Article  CAS  Google Scholar 

  14. J.-U. Lee, D. Yoon, and H. Cheong: Estimation of Young’s modulus of graphene by Raman spectroscopy. Nano Lett. 12, 4444 (2012).

    Article  CAS  Google Scholar 

  15. M. Khantha, N.A. Cordero, J.A. Alonso, M. Cawkwell, and L.A. Girifalco: Interaction and concerted diffusion of lithium in a (5,5) carbon nanotube. Phys. Rev. B 78, 115430 (2008).

    Article  Google Scholar 

  16. B.J. Landi, M.J. Ganter, C.D. Cress, R.A. DiLeo, and R.P. Raffaelle: Carbon nanotubes for lithium ion batteries. Energy Environ. Sci. 2, 638 (2009).

    Article  CAS  Google Scholar 

  17. W. Kohn and L.J. Sham: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).

    Article  Google Scholar 

  18. J.P. Perdew, K. Burke, and M. Ernzerhoff: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  19. J.M. Soler, E. Artacho, J.D. Dale, A. Garcia, J. Junquera, P. Ordejon, and D. Sanchez-Portal: The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14, 2745 (2002).

    Article  CAS  Google Scholar 

  20. N. Troullier and J.L. Martins: Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993 (1991).

    Article  CAS  Google Scholar 

  21. S. Kattel, P. Atanassov, and B. Kiefer: Density functional theory study of Ni–Nx/C electrocatalyst for oxygen reduction in alkaline and acidic media. J. Phys. Chem. C 116, 17378 (2012).

    Article  CAS  Google Scholar 

  22. D. Jiang, B.G. Sumpter, and S. Dai: Unique chemical reactivity of a graphene nanoribbon’s zigzag edge. J. Chem. Phys. 126, 134701 (2007).

    Article  Google Scholar 

  23. C. Rajesh, C. Majumder, H. Mizuseki, and Y. Kawazoe: A theoretical study on the interaction of aromatic amino acids with graphene and single walled carbon nanotube. J. Chem. Phys. 130, 124911 (2009).

    Article  Google Scholar 

  24. S.F. Boys and F. Bernardi: The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553 (1970).

    Article  CAS  Google Scholar 

  25. S.-M. Choi and S.-H. Jhi: Self-assembled metal atom chains on graphene nanoribbons. Phys. Rev. Lett. 101, 266105 (2008).

    Article  Google Scholar 

  26. C.G. Hwang, S.Y. Shin, S.-M. Choi, N.D. Kim, S.H. Uhm, H.S. Kim, C.C. Hwang, D.Y. Noh, S.-H. Jhi, and J.W. Chung: Stability of graphene band structures against an external periodic perturbation: Na on graphene. Phys. Rev. B 79, 115439 (2009).

    Article  Google Scholar 

  27. M. Khantha, N.A. Cordero, L.M. Molina, J.A. Alonso, and L.A. Girifalco: Interaction of lithium with graphene: an ab initio study. Phys. Rev. B 70, 125422 (2004).

    Article  Google Scholar 

  28. A.F. Jalbout, Y.P. Ortiz, and T.H. Seligman: Spontaneous symmetry breaking and strong deformations in metal adsorbed graphene sheets. Chem. Phys. Lett. 564, 69 (2013).

    Article  CAS  Google Scholar 

  29. O.I. Malyi, T.L. Tan, and S. Manzhos: A comparative computational study of structures, diffusion, and dopant interactions between Li and Na insertion into Si. Appl. Phys. Express 6, 027301 (2013).

    Article  Google Scholar 

  30. W. Humphrey, A. Dalke, and K. Schulten: VMD–visual molecular dynamics. J. Mol. Graphics 14, 33 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Tier 1 AcRF grant (R-265-000-430-133) of the Ministry of Education of Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Manzhos.

Supplementary materials

Supplementary materials

For supplementary material for this article, please visit {rs|http://dx.doi.org/10.1557/mrc.2013.24|url|}

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koh, Y.W., Manzhos, S. Curvature drastically changes diffusion properties of Li and Na on graphene. MRS Communications 3, 171–175 (2013). https://doi.org/10.1557/mrc.2013.24

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2013.24

Navigation