Skip to main content
Log in

Biomaterial-based strategies for the engineering of mechanically active soft tissues

  • Prospectives Articles
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Load-bearing, mechanically active tissues are routinely subjected to nonlinear mechanical deformations. Consequently, these tissues exhibit complex mechanical properties and unique tissue organizations. Successful engineering of mechanically active tissues relies on the integration of the mechanical sensing mechanism found in the native tissues into polymeric scaffolds. Intelligent biomaterials that closely mimic the structural organizations and multi-scale responsiveness of the natural extracellular matrices, when strategically combined with multipotent cells and dynamic culture devices that generate physiologically relevant physical forces, will lead to the creation of artificial tissues that are mechanically robust and biologically functional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. O.R. Ozerdem, S.A. Wolfe, and D. Marshall: Use of skin substitutes in pediatric patients. J. Craniofac. Surg. 14, 517 (2010)).

    Google Scholar 

  2. P. Macchiarini, P. Jungebluth, T. Go, M.A. Asnaghi, L.E. Rees, T.A. Cogan, A. Dodson, J. Martorell, S. Bellini, P.P. Parnigotto, S.C. Dickinson, A.P. Hollander, S. Mantero, M.T. Conconi, and M.A. Birchall: Clinical transplantation of a tissue-engineered airway. Lancet 372, 2023 (2010).

    Google Scholar 

  3. K. Gkioni, S.C.G. Leeuwenburgh, T.E.L. Douglas, A.G. Mikos, and J.A. Jansen: Mineralization of hydrogels for bone regeneration. Tissue Eng. Part B 16, 577 (2010).

    CAS  Google Scholar 

  4. A. Atala, S.B. Bauer, S. Soker, J.J. Yoo, and A.B. Retik: Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367, 1241 (2010).

    Google Scholar 

  5. J.R. Venugopal, M.P. Prabhakaran, S. Mukherjee, R. Ravichandran, K. Dan, and S. Ramakrishna: Biomaterial strategies for alleviation of myocardial infarction. J. R. Soc. Interface 9, 1 (2010).

    Google Scholar 

  6. J.D. Kakisis, C.D. Liapis, C. Breuer, and B.E. Sumpio: Artificial blood vessel: the holy grail of peripheral vascular surgery. J. Vasc. Surg. 41, 349 (2010).

    Google Scholar 

  7. S.D. Gray: Cellular physiology of the vocal folds. Otolaryngol. Clin. N. Am. 33, 679 (2010).

    Google Scholar 

  8. R. Langer and D.A. Tirrell: Designing materials for biology and medicine. Nature 428, 487 (2010).

    Google Scholar 

  9. J.A. Burdick and R.L. Mauck, eds.: Biomaterials for Tissue Engineering: A Review of the Past and Future Trends (Springer, New York, NY, 2011).

    Google Scholar 

  10. M.C. Serrano, E.J. Chung, and G.A. Ameer: Advances and applications of biodegradable elastomers in regenerative medicine. Adv. Funct. Mater. 20, 192 (2010).

    CAS  Google Scholar 

  11. M.P. Lutolf and J.A. Hubbell: Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23, 47 (2010).

    Google Scholar 

  12. P.M. Crapo, T.W. Gilbert, and S.F. Badylak: An overview of tissue and whole organ decellularization processes. Biomaterials 32, 3233 (2010).

    Google Scholar 

  13. B. Amsden: Curable, biodegradable elastomers: Emerging biomaterials for drug delivery and tissue engineering. Soft Matter 3, 1335 (2010).

    Google Scholar 

  14. J. Lal and J.E. Mark: Advancesin Elastomers and Rubber Elasticity (Plenum Press, New York, 1986).

    Google Scholar 

  15. S.E. Grieshaber, A.K. Jha, A.J.E. Farran, and X. Jia: Hydrogels in tissue engineering. In Biomaterials for Tissue Engineering: A Review of the Past and Future Trends; J.A. Burdick and R.L. Mauck, eds.; Springer, New York, 2011; p. 9.

    Google Scholar 

  16. J. Kopecek: Hydrogels: from soft contact lenses and implants to selfassembled nanomaterials. J. Polym. Sci. Pol. Chem. 47, 5929 (2010).

    Google Scholar 

  17. C. Zhang, A. Aung, L.Q. Liao, and S. Varghese: A novel single precursorbased biodegradable hydrogel with enhanced mechanical properties. Soft Matter 5, 3831 (2010).

    Google Scholar 

  18. J.P. Gong: Why are double network hydrogels so tough? Soft Matter 6, 2583 (2010).

    CAS  Google Scholar 

  19. K. Haraguchi, R. Farnworth, A. Ohbayashi, and T. Takehisa: Composition a leffects on mechanical properties of nanocomposite hydrogels composed of poly(n,n-dimethylacrylamide) and clay. Macromolecules 36, 5732 (2010).

    Google Scholar 

  20. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter: MolecularBiology of the Cell (Garland Science, New York, 2002).

    Google Scholar 

  21. L. Debelle, and A.M. Tamburro: Elastin: molecular description and function. Int. J. Biochem. Cell Biol. 31, 261 (2010).

    Google Scholar 

  22. J.F. Almine, D.V. Bax, S.M. Mithieux, L. Nivison-Smith, J. Rnjak, A. Waterhouse, S.G. Wise, and A.S. Weiss: Elastin-based materials. Chem. Soc. Rev. 39, 3371 (2010).

    CAS  Google Scholar 

  23. C.M. Bellingham, M.A. Lillie, J.M. Gosline, G.M. Wright, B.C. Starcher, A.J. Bailey, K.A. Woodhouse, and F.W. Keeley. Recombinant human elastin polypeptides self-assemble into biomaterials with elastin-like properties. Biopolymers 70, 445 (2010).

    Google Scholar 

  24. S.E. Grieshaber, A.J.E. Farran, S. Lin-Gibson, K.L. Kiick, and X.Q. Jia: Synthesis and characterization of elastin-mimetic hybrid polymers with multiblock, alternating molecular architecture and elastomeric properties. Macromolecules 42, 2532 (2010).

    Google Scholar 

  25. X.Q. Jia and K.L. Kiick: Hybrid multicomponent hydrogels for tissue engineering. Macromol. Biosci. 9, 140 (2010).

    Google Scholar 

  26. S.E. Grieshaber, A.J.E. Farran, S. Bai, K.L. Kiick, and X.Q. Jia: Tuning the properties of elastin mimetic hybrid copolymers via a modular polymerization method. Biomacromolecules (submitted 2012).

    Google Scholar 

  27. C.M. Elvin, A.G. Carr, M.G. Huson, J.M. Maxwell, R.D. Pearson, T. Vuocolo, N.E. Liyou, D.C.C. Wong, D.J. Merritt, and N.E. Dixon: Synthesis and properties of crosslinked recombinant pro-resilin. Nature 437, 999 (2010).

    Google Scholar 

  28. G.K. Qin, A. Rivkin, S. Lapidot, X. Hu, I. Preis, S.B. Arinus, O. Dgany, O. Shoseyov, and D.L. Kaplan: Recombinant exon-encoded resilins for elastomeric biomaterials. Biomaterials 32, 9231 (2010).

    Google Scholar 

  29. L.Q. Li, S. Teller, R.J. Clifton, X.Q. Jia, and K.L. Kiick: Tunable mechanical stability and deformation response of a resilin-based elastomer. Biomacromolecules 12, 2302 (2010).

    Google Scholar 

  30. R. Langer, and J.P. Vacanti: Tissue engineering. Science 260, 920 (2010)

    Google Scholar 

  31. P. Zheng, and T.J. McCarthy: Asurprise from 1954: Siloxane equilibration is a simple, robust, and obvious polymer self-healing mechanism. J. Am. Chem. Soc. 134, 2024 (2010).

    Google Scholar 

  32. D. Montarnal, M. Capelot, F. Tournilhac, and L. Leibler: Silica-like malleable materials from permanent organic networks. Science 334, 965 (2010).

    Google Scholar 

  33. C.J. Kloxin, T.F. Scott, B.J. Adzima, and C.N. Bowman: Covalent adaptable networks (cans): a unique paradigm in cross-linked polymers. Macromolecules 43, 2643 (2010).

    CAS  Google Scholar 

  34. R.V. Ulijn and A.M. Smith: Designing peptide based nanomaterials. Chem. Soc. Rev. 37, 664 (2010).

    Google Scholar 

  35. R. Orbach, L. Adler-Abramovich, S. Zigerson, I. Mironi-Harpaz, D. Seliktar, and E. Gazit: Self-assembled fmoc-peptides as a platform for the formation of nanostructures and hydrogels. Biomacromolecules 10, 2646 (2010).

    Google Scholar 

  36. J.D. Hartgerink, E. Beniash, and S.I. Stupp: Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684 (2010).

    Google Scholar 

  37. S.G. Zhang: Emerging biological materials through molecular selfassembly. Biotechnol. Adv. 20, 321 (2010).

    CAS  Google Scholar 

  38. J.P. Schneider, D.J. Pochan, B. Ozbas, K. Rajagopal, L. Pakstis, and J. Kretsinger: Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J. Am. Chem. Soc. 124, 15030 (2010).

    Google Scholar 

  39. Z. Megeed, J. Cappello, and H. Ghandehari: Genetically engineered silkelastinlike protein polymers for controlled drug delivery. Adv. Drug Deliv. Rev. 54, 1075 (2010)

    Google Scholar 

  40. W. Shen, K.C. Zhang, J.A. Kornfield, and D.A. Tirrell: Tuning the erosion rate of artificial protein hydrogels through control of network topology. Nat. Mater. 5, 153 (2010).

    Google Scholar 

  41. C.Q. Yan, A. Altunbas, T. Yucel, R.P. Nagarkar, J.P. Schneider, and D.J. Pochan: Injectable solid hydrogel: mechanism of shear-thinning and immediate recovery of injectable beta-hairpin peptide hydrogels. Soft Matter 6, 5143 (2010).

    CAS  Google Scholar 

  42. B.D. Hoffman, C. Grashoff, and M.A. Schwartz: Dynamic molecular processes mediate cellular mechanotransduction. Nature 475, 316 (2010)

    Google Scholar 

  43. P. Fratzl: Biomimetic materials research: What can we really learn from nature’s structural materials? J. R. Soc. Interface 4, 637 (2010).

    Google Scholar 

  44. G.E. Fantner, T. Hassenkam, J.H. Kindt, J.C. Weaver, H. Birkedal, L. Pechenik, J.A. Cutroni, G.A.G. Cidade, G.D. Stucky, D.E. Morse, and P.K. Hansma: Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat. Mater. 4, 612 (2010).

    Google Scholar 

  45. N. Becker, E. Oroudjev, S. Mutz, J.P. Cleveland, P.K. Hansma, C.Y. Hayashi, D.E. Makarov, and H.G. Hansma: Molecular nanosprings in spider capture-silk threads. Nat. Mater. 2, 278 (2010).

    Google Scholar 

  46. E. Wisse, L.E. Govaert, H.E.H. Meijer, and E.W. Meijer: Unusual tuning of mechanical properties of thermoplastic elastomers using supramolecular fillers. Macromolecules 39, 7425 (2010).

    Google Scholar 

  47. R.P. Sijbesma, F.H. Beijer, L. Brunsveld, B.J.B. Folmer, J. Hirschberg, R.F.M. Lange, J.K.L. Lowe, and E.W. Meijer: Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 278, 1601 (2010)

    Google Scholar 

  48. T.F.A. Greef, and E.W. Meijer: Materials science—supramolecular polymers. Nature 453, 171 (2010).

    Google Scholar 

  49. A.M. Kushner, V. Gabuchian, E.G. Johnson, and Z.B. Guan: Biomimetic design of reversibly unfolding cross-linker to enhance mechanical properties of 3D network polymers. J. Am. Chem. Soc. 129, 14110 (2010).

    Google Scholar 

  50. A.M. Kushner, and Z.B. Guan: Modular design in natural and biomimetic soft materials. Angew. Chem.-Int. Ed. 50, 9026 (2010)

    Google Scholar 

  51. P. Cordier, F. Tournilhac, C. Soulie-Ziakovic, and L. Leibler: Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451, 977 (2010)

    Google Scholar 

  52. P.Y.W. Dankers, M.C. Harmsen, L.A. Brouwer, M.J.A. Van Luyn, and E.W. Meijer: A modular and supramolecular approach to bioactive scaffolds for tissue engineering. Nat. Mater. 4, 568 (2010).

    Google Scholar 

  53. S. Lv, D.M. Dudek, Y. Cao, M.M. Balamurali, J. Gosline, and H.B. Li: Designed biomaterials to mimic the mechanical properties of muscles. Nature 465, 69 (2010)

    CAS  Google Scholar 

  54. M.M. Stevens, and J.H. George: Exploring and engineering the cell surface interface. Science 310, 1135 (2010).

    Google Scholar 

  55. F. Torrent-Guasp, M.J. Kocica, A.F. Corno, M. Komeda, F. Carreras-Costa, A. Flotats, J. Cosin-Aguillar, and H. Wen: Towards new understanding of the heart structure and function. Eur. J. Cardio-Thorac. Surg. 27, 191 (2010)

    Google Scholar 

  56. J.W. Holmes, T.K. Borg, and J.W. Covell: AnnualReview of Biomedical Engineering. Annual Reviews (Annual Review: Palo Alto, CA, 2005), Vol. 7, p. 223.

    CAS  Google Scholar 

  57. N.P. Cohen, R.J. Foster, and V.C. Mow: Composition and dynamics of articular cartilage: Structure, function, and maintaining healthy state. J. Orthop. Sports Phys. Ther. 28, 203 (2010)

    Google Scholar 

  58. M. Hirano: Structure of the vocal fold in normal and diesease states: Anatomical and physical studies. ASHA Rep. 11, 11 (2010).

    Google Scholar 

  59. X.Q. Jia, Y. Yeo, R.J. Clifton, T. Jiao, D.S. Kohane, J.B. Kobler, S.M. Zeitels, and R. Langer: Hyaluronic acid-based microgels and microgel networks for vocal fold regeneration. Biomacromolecules 7, 3336 (2010).

    Google Scholar 

  60. A.K. Jha, R.A. Hule, T. Jiao, S.S. Teller, R.J. Clifton, R.L. Duncan, D.J. Pochan, and X.Q. Jia: Structural analysis and mechanical characterization of hyaluronic acid-based doubly cross-linked networks. Macromolecules 42, 537 (2010).

    Google Scholar 

  61. A.K. Jha, M.S. Malik, M.C. Farach-Carson, R.L. Duncan, and X.Q. Jia: Hierarchically structured, hyaluronic acid-based hydrogel matrices via the covalent integration of microgels into macroscopic networks. Soft Matter 6, 5045 (2010).

    CAS  Google Scholar 

  62. A.K. Jha, W.D. Yang, C.B. Kirn-Safran, M.C. Farach-Carson, and X.Q. Jia: Perlecan domain i-conjugated, hyaluronic acid-based hydrogel particles for enhanced chondrogenic differentiation via bmp-2 release. Biomaterials 30, 6964 (2010).

    Google Scholar 

  63. X. Xu, A.K. Jha, R.L. Duncan, and X.Q. Jia: Heparin-decorated, hyaluronic acid-based hydrogel particles for the controlled release of bone morphogenetic protein 2. Acta Biomater. 7, 3050 (2010).

    Google Scholar 

  64. X. Xu, A.K. Jha, D.A. Harrington, M.C. Farach-Carson, and X.Q. Jia: Hyaluronic acid-based hydrogels: From a natural polysaccharide to complex networks. Soft Matter 8, 3280 (2010).

    Google Scholar 

  65. O.D. Krishna, A.K. Jha, X.Q. Jia, and K.L. Kiick: Integrin-mediated adhesion and proliferation of human mscs elicited by a hydroxyprolinelacking, collagen-like peptide. Biomaterials 32, 6412 (2010).

    Google Scholar 

  66. A.K. Jha, X.A. Xu, R.L. Duncan, and X.Q. Jia: Controlling the adhesion and differentiation of mesenchymal stem cells using hyaluronic acid-based, doubly crosslinked networks. Biomaterials 32, 2466 (2010).

    Google Scholar 

  67. F.T. Moutos, L.E. Freed, and F. Guilak: A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nat. Mater. 6, 162 (2010).

    Google Scholar 

  68. N.L. Nerurkar, B.M. Baker, S. Sen, E.E. Wible, D.M. Elliott, and R.L. Mauck: Nanofibrous biologic laminates replicate the form and function of the annulus fibrosus. Nat. Mater. 8, 986 (2010).

    Google Scholar 

  69. G.C. Engelmayr, M.Y. Cheng, C.J. Bettinger, J.T. Borenstein, R. Langer, and L.E. Freed: Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat. Mater. 7, 1003 (2010).

    Google Scholar 

  70. M.C. Farach-Carson, J.T. Hecht, and D.D. Carson: Heparan sulfate proteoglycans: key players in cartilage biology. Crit. Rev. Eukaryot. Gene Expr. 15, 29 (2010).

    Google Scholar 

  71. M.C. Farach-Carson, and D.D. Carson: Perlecan—a multifunctional extracellular proteoglycan scaffold. Glycobiology 17, 897 (2010).

    Google Scholar 

  72. C.L. Casper, W.D. Yang, M.C. Farach-Carson, and J.F. Rabolt: Coating electrospun collagen and gelatin fibers with perlecan domain i for increased growth factor binding. Biomacromolecules 8, 1116 (2010).

    Google Scholar 

  73. D.J. Tschumperlin, G.H. Dai, I.V. Maly, T. Kikuchi, L.H. Laiho, A.K. McVittie, K.J. Haley, C.M. Lilly, P.T.C. So, D.A. Lauffenburger, R.D. Kamm, and J.M. Drazen: Mechanotransduction through growthfactor shedding into the extracellular space. Nature 429, 83 (2010).

    Google Scholar 

  74. K.Y. Lee, M.C. Peters, K.W. Anderson, and D.J. Mooney: Controlled growth factor release from synthetic extracellular matrices. Nature 408, 998 (2010).

    Google Scholar 

  75. L.X. Xiao, C. Liu, J.H. Zhu, D.J. Pochan, and X.Q. Jia: Hybrid, elastomeric hydrogels crosslinked by multifunctional block copolymer micelles. Soft Matter 6, 5293 (2010).

    CAS  Google Scholar 

  76. L.X. Xiao, J.H. Zhu, D.J. Pochan, J.D. Londono, and X.Q. Jia: Mechanoresponsive hydrogels via the covalent integration of block copolymer micelles in macroscopic matrices. Soft Matter (manuscript in preparation 2011).

    Google Scholar 

  77. C.J. Hartnick, R. Rehbar, and V. Prasad: Development and maturation of the pediatric human vocal fold lamina propria. Laryngoscope 115, 4 (2010).

    Google Scholar 

  78. K. Sato, M. Hirano, and T. Nakashima: Fine structure of the human newborn and infant vocal fold mucosae. Ann. Otol. Rhinol. Laryngol. 110, 417 (2010).

    Google Scholar 

  79. K. Sato, M. Hirano, and T. Nakashima: Age-related changes of collagenous fibers in the human vocal fold mucosa. Ann. Otol. Rhinol. Laryngol. 111, 15–20 (2010)).

    Google Scholar 

  80. K. Sato, T. Nakashima, S. Nonaka, and Y. Harabuchi: Histopathologic investigations of the unphonated human vocal fold mucosa. Acta Oto-Laryngol. 128, 694 (2010).

    Google Scholar 

  81. J.Y. Kresh, and A. Chopra: Intercellular and extracellular mechanotransduction in cardiac myocytes. Pflugers Arch. 462, 75 (2010).

    Google Scholar 

  82. C. Kung: A possible unifying principle for mechanosensation. Nature 436, 647 (2010)

    Google Scholar 

  83. M. Chiquet: Regulation of extracellular matrix gene expression by mechanical stress. Matrix Biol. 18, 417 (2010).

    Google Scholar 

  84. M.E. Chicurel, C.S. Chen, and D.E. Ingber: Cellular control lies in the balance of forces. Curr. Opin. Cell. Biol. 10, 232 (2010).

    Google Scholar 

  85. D.E. Ingber: Tensegrity-based mechanosensing from macro to micro. Prog. Biophys. Mol. Biol. 97, 163 (2010).

    Google Scholar 

  86. D.E. Ingber: Cellular mechanotransduction: Putting all the pieces together again. Faseb J. 20, 811 (2010).

    Google Scholar 

  87. D.A. Fletcher, and D. Mullins: Cell mechanics and the cytoskeleton. Nature 463, 485 (2010).

    CAS  Google Scholar 

  88. H.C. Chen, and Y.C. Hu: Bioreactors for tissue engineering. Biotechnol. Lett. 28, 1415 (2010).

    Google Scholar 

  89. L.E. Niklason, J. Gao, W.M. Abbott, K.K. Hirschi, S. Houser, R. Marini, and R. Langer: Functional arteries grown in vitro. Science 284, 489 (2010)

    Google Scholar 

  90. T. Davisson, S. Kunig, A. Chen, R. Sah, and A. Ratcliffe: Static and dynamic compression modulate matrix metabolism in tissue engineered cartilage. J. Orthop. Res. 20, 842 (2010).

    Google Scholar 

  91. D.M. Doroski, M.E. Levenston, and J.S. Temenoff: Cyclic tensile culture promotes fibroblastic differentiation of marrow stromal cells encapsulated in poly(ethylene glycol)-based hydrogels. Tissue Eng. Part A 16, 3457 (2010).

    CAS  Google Scholar 

  92. I.R. Titze: Mechanical stress in phonation. J. Voice 8, 99 (2010).

    Google Scholar 

  93. I.R. Titze, R.W. Hitchcock, K. Broadhead, K. Webb, W. Li, S.D. Gray, and P.A. Tresco: Design and validation of a bioreactor for engineering vocal fold tissues under combined tensile and vibrational stresses. J. Biomech. 37, 1521 (2010).

    Google Scholar 

  94. J.K. Kutty, and K. Webb: Vibration stimulates vocal mucosa-like matrix expression by hydrogel-encapsulated fibroblasts. J. Tissue Eng. Regen. M 4, 62 (2010).

    CAS  Google Scholar 

  95. X. Jia, M. Jia, A.K. Jha, A.J.E. Farran, and Z. Tong: Dynamic vibrational method and device for vocal fold tissue growth. U.S. Patent No. 12/781,305, May 17, 2010.

    Google Scholar 

  96. A.J.E. Farran, S.S. Teller, F. Jia, R.J. Clifton, R.L. Duncan, and X. Jia: Design and characterization of a dynamic vibrational culture system. J. Tissue Eng. Regen. M (in press 2011). doi: 10.1002/term.514.

    Google Scholar 

  97. S. Ramachandran, Y. Tseng, and Y.B. Yu: Repeated rapid shearresponsiveness of peptide hydrogels with tunable shear modulus. Biomacromolecules 6, 1316 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinqiao Jia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, Z., Jia, X. Biomaterial-based strategies for the engineering of mechanically active soft tissues. MRS Communications 2, 31–39 (2012). https://doi.org/10.1557/mrc.2012.4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2012.4

Navigation