Skip to main content

First principles study of two-dimensional early transition metal carbides

Abstract

Recently, we reported on the facile synthesis of a number of two-dimensional early transition metal carbides and nitrides, derived from the MAX phases, that we labeled MXenes. Herein, we report on the electronic and elastic properties—investigated by first principles calculations utilizing the generalized gradient approximation within the density functional theory—of the following two-dimensional transition metal carbides: Ti2C, Ti3C2, Ti4C3, V2C, Cr2C, Zr2C, Hf2C, and Ta2C, Ta3C2, and Ta4C3. Similar to the MAX phases, the MXenes are found to be metallic and possess high elastic moduli when stretched along the basal planes.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Table 1.
Figure 3

References

  1. 1

    B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147 (2011).

    CAS  Article  Google Scholar 

  2. 2

    F. Schwierz: Graphene transistors. Nat. Nanotechnol. 5, 487 (2010).

    CAS  Article  Google Scholar 

  3. 3

    Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, and R.S. Ruoff: Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537 (2011).

    CAS  Article  Google Scholar 

  4. 4

    E. Yoo, J. Kim, E. Hosono, H.-S. Zhou, T. Kudo, and I. Honma: Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8, 2277 (2008).

    CAS  Article  Google Scholar 

  5. 5

    S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Ruoff: Graphene-based composite materials. Nature 442, 282 (2006).

    CAS  Article  Google Scholar 

  6. 6

    D. Wu, F. Zhang, P. Liu, and X. Feng: Two-dimensional nanocomposites based on chemically modified graphene. Chem. Eur. J. 17, 10804 (2011).

    CAS  Article  Google Scholar 

  7. 7

    K.P. Loh, Q. Bao, P.K. Ang, and J. Yang: The chemistry of graphene. J. Mater. Chem. 20, 2277 (2010).

    CAS  Article  Google Scholar 

  8. 8

    Y. Gogotsi: Controlling graphene properties through chemistry. J. Phys. Chem. Lett. 2, 2509 (2011).

    CAS  Article  Google Scholar 

  9. 9

    D. Pacile, J.C. Meyer, C.O. Girit, and A. Zettl: The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 92, 133107 (2008).

    Article  Google Scholar 

  10. 10

    R. Ma and T. Sasaki: Nanosheets of oxides and hydroxides: ultimate 2D charge-bearing functional crystallites. Adv. Mater. 22, 5082 (2010).

    CAS  Article  Google Scholar 

  11. 11

    K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, and A.K. Geim: Two-dimensional atomic crystals. Proc. Natl Acad. Sci. 102, 10451 (2005).

    CAS  Article  Google Scholar 

  12. 12

    M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M.W. Barsoum: Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248 (2011).

    CAS  Article  Google Scholar 

  13. 13

    M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, and M.W. Barsoum: Two-dimensional transition metal carbides. ACS Nano 6, 1322 (2012).

    CAS  Article  Google Scholar 

  14. 14

    M.W. Barsoum: The MN + 1AXN phases: a new class of solids: Thermodynamically stable nanolaminates. Prog. Solid State Chem. 28, 201 (2000).

    CAS  Article  Google Scholar 

  15. 15

    M. Naguib, J. Come, B. Dyatkin, V. Presser, P.-L. Taberna, P. Simon, M.W. Barsoum, and Y. Gogotsi: MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochem. Commun. 16, 61 (2012).

    CAS  Article  Google Scholar 

  16. 16

    K.N. Kudin, G.E. Scuseria, and B.I. Yakobson: C2F, BN, and C nanoshell elasticity from ab initio computations. Phys. Rev. B 64, 235406 (2001).

    Article  Google Scholar 

  17. 17

    Q. Zhao, M.B. Nardelli, and J. Bernholc: Ultimate strength of carbon nanotubes: a theoretical study. Phys. Rev. B 65, 144105 (2002).

    Article  Google Scholar 

  18. 18

    H. Rydberg, M. Dion, N. Jacobson, E. Schröder, P. Hyldgaard, S.I. Simak, D.C. Langreth, and B.I. Lundqvist: Van der Waals density functional for layered structures. Phys. Rev. Lett. 91, 126402 (2003).

    CAS  Article  Google Scholar 

  19. 19

    H. Sato, K. Ono, T. Sasaki, and A. Yamagishi: First-principles study of two-dimensional titanium dioxides. J. Phys. Chem. B 107, 9824 (2003).

    CAS  Article  Google Scholar 

  20. 20

    M.E. Kurtoglu, T. Longenbach, K. Sohlberg, and Y. Gogotsi: Strong coupling of Cr and N in Cr–N-doped TiO2 and its effect on photocatalytic activity. J. Phys. Chem. C 115, 17392 (2011).

    CAS  Article  Google Scholar 

  21. 21

    I.R. Shein and A.L. Ivanovskii: Graphene-like titanium carbides and nitrides Tin+1Cn, Tin+1Nn (n = 1, 2, and 3) from de-intercalated MAX phases: first-principles probing of their structural, electronic properties and relative stability. Comput. Mater. Sci. 65, 104 (2012).

    CAS  Article  Google Scholar 

  22. 22

    S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, and M.C. Payne: First principles methods using CASTEP. Z. Kristallogr. 220, 567 (2005).

    CAS  Google Scholar 

  23. 23

    Z. Wu and R.E. Cohen: More accurate generalized gradient approximation for solids. Phys. Rev. B 73, 235116 (2006).

    Article  Google Scholar 

  24. 24

    M.B. Kanoun and M. Jaouen: Structure of the ternary carbide Ti3SnC2 from ab initio calculations. J. Phys. Condens. Matter. 20, 085211 (2008).

    Article  Google Scholar 

  25. 25

    E. Konstantinova, S.O. Dantas, and P.M.V.B. Barone: Electronic and elastic properties of two-dimensional carbon planes. Phys. Rev. B 74, 035417 (2006).

    Article  Google Scholar 

  26. 26

    K.H. Michel and B. Verberck: Theory of the elastic constants of graphite and graphene. Phys. Status Solidi. B 245, 2177 (2008).

    CAS  Article  Google Scholar 

  27. 27

    G.R. Gruzalski and D.M. Zehner: Defect states in substoichiometric tantalum carbide. Phys. Rev. B 34, 3841 (1986).

    CAS  Article  Google Scholar 

  28. 28

    S.E. Lofland, J.D. Hettinger, K. Harrell, P. Finkel, S. Gupta, M.W. Barsoum and G. Hug: Elastic and electronic properties of select M2AX phases. Appl. Phys. Lett. 84, 508 (2004).

    CAS  Article  Google Scholar 

  29. 29

    M. Sahnoun, C. Daul, M. Driz, J.C. Parlebas, and C. Demangeat: FP-LAPW investigation of electronic structure of TaN and TaC compounds. Comput. Mater. Sci. 33, 175 (2005).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the US Department of Energy under Contract No. DE-AC02-05CH11231, Subcontract 6951370 under the Batteries for Advanced Transportation Technologies (BATT) Program. This work was also supported by the Commonwealth of Pennsylvania’ s Ben Franklin Technology Development Authority through the Ben Franklin Technology Partners of Southeastern Pennsylvania.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yury Gogotsi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kurtoglu, M., Naguib, M., Gogotsi, Y. et al. First principles study of two-dimensional early transition metal carbides. MRS Communications 2, 133–137 (2012). https://doi.org/10.1557/mrc.2012.25

Download citation