Skip to main content
Log in

Cu precipitation on dislocation and interface in quench-aged steel

  • Research Letters
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The Cu precipitation in a quench-aged high-strength low-alloy steel is studied at the atomic scale by atom probe tomography and highresolution transmission electron microscopy. The results indicate that the Cu precipitates greatly correlate with carbides in the aspect of distributional character, i.e., the two phases are prone to coprecipitate on the dislocations and/or interfaces (low angle boundaries of the martensite laths). The crystallographic defects have a significant effect on the sizes, morphology and composition of Cu precipitates with Ni and Mn segregation shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Table 1.
Figure 3
Figure 4

Similar content being viewed by others

References

  1. S. Vaynman, D. Isheim, R. Prakash Kolli, S.P. Bhat, D.N. Seidman, and M.E. Fine: High-strength low-carbon ferritic steel containing Cu-Fe-Ni-Al-Mn precipitates. Metall. Mater. Trans. A 39, 363 (2008).

    Google Scholar 

  2. Z. Zhang, C. Liu, Y. Wen, A. Hirata, S. Guo, G. Chen, M. Chen, and B. Chin: Influence of aging and thermomechanical treatments on the mechanical properties of a nanocluster-strengthened ferritic steel. Metall. Mater. Trans. A 43, 351 (2012).

    Google Scholar 

  3. R.D.K. Misra, Z. Jia, R. O’Malley, and S.J. Jansto: Precipitation behavior during thin slab thermomechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength structural steels: the effect on mechanical properties. Mater. Sci. Eng. A 528, 8772 (2011).

    CAS  Google Scholar 

  4. A. Ghosh, B. Mishra, S. Das, and S. Chatterjee: An ultra low carbon Cu bearing steel: influence of thermomechanical processing and aging heat treatment on structure and properties. Mater. Sci. Eng. A 374, 43 (2004).

    Google Scholar 

  5. A. Ghosh, B. Mishra, S. Das, and S. Chatterjee: Microstructure, properties, and age hardening behavior of a thermomechanically processed ultralow-carbon Cu-bearing high-strength steel. Metall. Mater. Trans. A 36, 703 (2005).

    Google Scholar 

  6. A. Saha, J. Jung, and G. Olson: Prototype evaluation of transformation toughened blast resistant naval hull steels: Part II. J. Computer-Aided Mater. Des. 14, 201 (2007).

    CAS  Google Scholar 

  7. S. Thompson and G. Krauss: Copper precipitation during continuous cooling and isothermal aging of a710-type steels. Metall. Mater. Trans. A 27, 1573 (1996).

    Google Scholar 

  8. Q.D. Liu, W.Q. Liu, and X.Y. Xiong: Correlation of Cu precipitation with austenite–ferrite transformation in a continuously cooled multicomponent steel: an atom probe tomography study. J. Mater. Res. 27, 1060 (2012).

    CAS  Google Scholar 

  9. Q.D. Liu and S.J. Zhao: Comparative study on austenite decomposition and Cu precipitation during continuous cooling transformation. Metall. Mater. Trans. A (in press). DOI:10.1007/s11661-012-1383-2.

  10. M. Mujahid, A.K. Lis, C.I. Garcia, and A.J. DeArdo: HSLA-100 steels: Influence of aging heat treatment on microstructure and properties. J. Mater. Eng. Perform. 7, 247 (1998).

    CAS  Google Scholar 

  11. A. Deschamps, M. Militzer, and W.J. Poole: Comparison of precipitation kinetics and strengthening in an Fe-0.8% Cu alloy and a 0.8% Cu-containing low-carbon steel. ISIJ Int. 43, 1826 (2003).

    CAS  Google Scholar 

  12. A. Deschamps, M. Militzer, and W.J. Poole: Precipitation kinetics and strengthening of a Fe-0.8 wt% Cu alloy. ISIJ Int. 41, 196 (2001).

    CAS  Google Scholar 

  13. J. Takahashi, K. Kawakami, and Y. Kobayashi: Consideration of particle-strengthening mechanism of copper-precipitation-strengthened steels by atom probe tomography analysis. Mater. Sci. Eng. A 535, 144 (2012).

    CAS  Google Scholar 

  14. G.R. Speich and W.C. Leslie: Tempering of steel. Metall. Trans. 3, 1043 (1972).

    CAS  Google Scholar 

  15. H.A.H. Duparc, R.C. Doole, M.L. Jenkins, and A. Barbu: A high-resolution electron microscopy study of copper precipitation in Fe-1.5 wt% Cu under electron irradiation. Philos. Mag. Lett. 71, 325 (1995).

    Google Scholar 

  16. Y. Le Bouar: Atomistic study of the coherency loss during the b.c.c.-9R transformation of small copper precipitates in ferritic steels. Acta Mater. 49, 2661 (2001).

    Google Scholar 

  17. T.H. Lee, Y.O. Kim, and S.J. Kim: Crystallographic model for bcc-to-9R martensitic transformation of Cu precipitates in ferritic steel. Philos. Mag. 87, 209 (2007).

    CAS  Google Scholar 

  18. W. Wang, B.X. Zhou, G. Xu, D.F. Chu, and J.C. Peng: High-resolution electron microscopy characterization of 2H and 9R variant in the ferritic steels containing copper. Mater. Charact. 62, 438 (2011).

    CAS  Google Scholar 

  19. R. Monzen, M. Iguchi, and M.L. Jenkins: Structural changes of 9R copper precipitates in an aged Fe-Cu alloy. Philos. Mag. Lett. 80, 137 (2000).

    CAS  Google Scholar 

  20. R. Monzen, M.L. Jenkins, and A.P. Sutton: The bcc-to-9R martensitic transformation of Cn precipitates and the relaxation process of elastic strains in an Fe-Cu alloy. Philos. Mag. A 80, 711 (2000).

    CAS  Google Scholar 

  21. P.J. Othen, M.L. Jenkins, G.D.W. Smith, and W.J. Phythian: Transmission electron microscope investigations of the structure of copper precipitates in thermally-aged Fe-Cu and Fe-Cu-Ni. Philos. Mag. Lett. 64, 383 (1991).

    CAS  Google Scholar 

  22. J.J. Blackstock and G.J. Ackland: Phase transitions of copper precipitates in Fe-Cu alloys. Philos. Mag. A 81, 2127 (2001).

    CAS  Google Scholar 

  23. D. Isheim, R.P. Kolli, M.E. Fine, and D.N. Seidman: An atom-probe tomographic study of the temporal evolution of the nanostructure of Fe-Cu based high-strength low-carbon steels. Scripta Mater. 55, 35 (2006).

    CAS  Google Scholar 

  24. S.R. Goodman, S.S. Brenner, and J.R. Low: An FIM-atom probe study of the precipitation of copper from lron-1.4 at. pct copper. Part II: atom probe analyses. Metall. Mater. Trans. B 4, 2371 (1973).

    CAS  Google Scholar 

  25. M. Schober, E. Eidenberger, P. Staron, and H. Leitner: Critical consideration of precipitate analysis of Fe-1 at.% Cu using atom probe and small-angle neutron scattering. Micros. Microanal. 17, 26 (2011).

    CAS  Google Scholar 

  26. D. Isheim, M.S. Gagliano, M.E. Fine, and D.N. Seidman: Interfacial segregation at Cu-rich precipitates in a high-strength low-carbon steel studied on a sub-nanometer scale. Acta Mater. 54, 841 (2006).

    CAS  Google Scholar 

  27. M.D. Mulholland and D.N. Seidman: Multiple dispersed phases in a high-strength low-carbon steel: an atom-probe tomographic and synchrotron x-ray diffraction study. Scripta Mater. 60, 992 (2009).

    CAS  Google Scholar 

  28. H. Nakamichi, K. Yamada, K. Sato: Sub-nanometre elemental analysis of Cu cluster in Fe–Cu–Ni alloy using aberration corrected STEM-EDS. J. Micros. 242, 55 (2011).

    CAS  Google Scholar 

  29. R.P. Kolli and D.N. Seidman: The temporal evolution of the decomposition of a concentrated multicomponent Fe-Cu-based steel. Acta Mater. 56, 2073 (2008).

    CAS  Google Scholar 

  30. M. Schober, E. Eidenberger, H. Leitner, P. Staron, D. Reith, and R. Podloucky: A critical consideration of magnetism and composition of (bcc) Cu precipitates in (bcc) Fe. Appl. Phys. A 99, 697 (2010).

    CAS  Google Scholar 

  31. A.B. Edwards, K.J. Roberts, S. Pizzini, and W.J. Phythian: The local atomic environment of Cu and Ni in Fe-Cu-Ni alloys following thermal ageing and neutron irradiation: a study using fluorescence mode x-ray absorption fine-structure spectroscopy. Philos. Mag. A 79, 1295 (1999).

    CAS  Google Scholar 

  32. M.K. Miller: APT characterization of solute segregation to individual dislocations. TMS Lett. 1, 19 (2004).

    CAS  Google Scholar 

  33. M.K. Miller: Atom probe tomography characterization of solute segregation to dislocations. Micros. Res. Tech. 69, 359 (2006).

    CAS  Google Scholar 

  34. M. Miller: Atom probe tomography characterization of solute segregation to dislocations and interfaces. J. Mater. Sci. 41, 7808 (2006).

    CAS  Google Scholar 

  35. M.K. Miller: Interface analysis with the three-dimensional atom probe. Surf. Interface Anal. 31, 593 (2001).

    CAS  Google Scholar 

  36. D. Blavette, E. Cadel, A. Fraczkiewicz, and A. Menand: Three-dimensional atomic-scale imaging of impurity segregation to line defects. Science 286, 2317 (1999).

    CAS  Google Scholar 

  37. M.K. Miller: Atom Probe Tomography: Analysis at the Atomic Level (Kluwer Publishing/Plenum Press, New York, NY, 2000).

    Google Scholar 

  38. A.J. Ardell: Precipitation hardening. Metall. Mater. Trans. A 16, 2131 (1985).

    Google Scholar 

  39. Q.D. Liu, W.Q. Liu, Z.M. Wang, and B.X. Zhou: 3D atom probe characterization of alloy carbides in tempering martenite I. Nucleation. Acta Metall. Sin. 45, 1281 (2009).

    CAS  Google Scholar 

  40. Q.D. Liu, W.Q. Liu, and S.J. Zhao: Solute behavior in the initial nucleation of V- and Nb-containing carbide. Metall. Mater. Trans. A 42, 3952 (2011).

    CAS  Google Scholar 

  41. B. Hutchinson, J. Hagstrom, O. Karlsson, D. Lindell, M. Tornberg, F. Lindberg, and M. Thuvander: Microstructures and hardness of as-quenched martensites (0.1–0.5%C). Acta Mater. 59, 5845 (2011).

    CAS  Google Scholar 

  42. R. Kirchheim: Grain coarsening inhibited by solute segregation. Acta Mater. 50, 413 (2002).

    CAS  Google Scholar 

  43. R. Kirchheim: Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation: II. Experimental evidence and consequences. Acta Mater. 55, 5139 (2007).

    CAS  Google Scholar 

  44. R. Kirchheim: Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background. Acta Mater. 55, 5129 (2007).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support of National Natural Science Foundation of China (Grant No. 50931003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingdong Liu.

Supplementary materials

Supplementary materials

For supplementary material for this article, please visit http://dx.doi.org/10.1557/mrc.2012.21

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Q., Zhao, S. Cu precipitation on dislocation and interface in quench-aged steel. MRS Communications 2, 127–132 (2012). https://doi.org/10.1557/mrc.2012.21

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2012.21

Navigation