Skip to main content
Log in

The effect of magnesium substitution on the hardness of synthetic and biogenic calcite

  • Research Letters
  • Published:
MRS Communications Aims and scope Submit manuscript

An Erratum to this article was published on 01 March 2013

This article has been updated

Abstract

Biogenic minerals often contain inorganic and organic impurities that are believed to harden and toughen the material. However, because of the complexity of these systems, it is difficult to deconvolute the effect of each of these impurities on the hardness of the material. We have created single-crystal samples with a range of magnesium concentrations and measured their hardness while controlling for orientation. We find that hardness increases linearly with magnesium content and that magnesium impurities could account for ∼20% of the increased hardness in biogenic calcite from the mollusk Atrina rigida when compared with pure geologic calcite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.

Similar content being viewed by others

Change history

References

  1. M.A. Meyers, P.-Y. Chen, A. Y.-M. Lin, and Y. Seki: Biological materials: structure and mechanical properties. Prog. Mater. Sci. 53, 1 (2008).

    Article  CAS  Google Scholar 

  2. Y.R. Ma, S.R. Cohen, L. Addadi, and S. Weiner: Sea urchin tooth design: an “all-calcite” polycrystalline reinforced fiber composite for grinding rocks. Adv. Mater. 20, 1555 (2008).

    Article  CAS  Google Scholar 

  3. R.Z. Wang, L. Addadi, and S. Weiner: Design strategies of sea urchin teeth: structure, composition and micromechanical relations to function. Philos. Trans. R. Soc. Lond. B 352, 469 (1997).

    Article  CAS  Google Scholar 

  4. M.E. Kunitake, L.M. Mangano, J.M. Peloquin, S.P. Baker, and L.A. Estroff: Evaluation of strengthening mechanisms in calcite single crystals from mollusk shells. Acta Biomater. (2012, submitted).

    Google Scholar 

  5. C. Moureaux, A. Pérez-Huerta, P. Compère, W. Zhu, T. Leloup, M. Cusack, and P. Dubois: Structure, composition and mechanical relations to function in sea urchin spine. J. Struct. Biol. 170, 41 (2010).

    Article  CAS  Google Scholar 

  6. A. Perez-Huerta, M. Cusack, and W. Zhu: Assessment of crystallographic influence on material properties of calcite brachiopods. Mineral. Mag. 72, 563 (2008).

    Article  CAS  Google Scholar 

  7. A. Pérez-Huerta, M. Cusack, W. Zhu, J. England, and J. Hughes: Material properties of brachiopod shell ultrastructure by nanoindentation. J. R. Soc. Interface 4, 33 (2007).

    Article  Google Scholar 

  8. E. Griesshaber, W.W. Schmahl, R. Neuser, T. Pettke, M. Blum, J. Mutterlose, and U. Brand: Crystallographic texture and microstructure of terebratulide brachiopod shell calcite: an optimized materials design with hierarchical architecture. Am. Mineral. 92, 722 (2007).

    Article  CAS  Google Scholar 

  9. J. Aizenberg and G. Hendler: Designing efficient microlens arrays: lessons from Nature. J. Mater. Chem. 14, 2066 (2004).

    Article  CAS  Google Scholar 

  10. C. Merkel, J. Deuschle, E. Griesshaber, S. Enders, E. Steinhauser, R. Hochleitner, U. Brand, and W.W. Schmahl: Mechanical properties of modern calcite (Mergerlia truncata) and phosphate-shelled brachiopods (Discradisca stella and Lingula anatina) determined by nanoindentation. J. Struct. Biol. 168, 396 (2009).

    Article  CAS  Google Scholar 

  11. L.M. Anovitz and E.J. Essene: Phase equilibria in the system CaCO3-MgCO3-FeCO3. J. Petrol. 28, 389 (1987).

    Article  CAS  Google Scholar 

  12. S. Raz, S. Weiner, and L. Addadi: Formation of high-magnesian calcites via an amorphous precursor phase: possible biological implications. Adv. Mater. 12, 38 (2000).

    Article  CAS  Google Scholar 

  13. H.Y. Li and L.A. Estroff: Calcite growth in hydrogels: assessing the mechanism of polymer-network incorporation into single crystals. Adv. Mater. 21, 470 (2009).

    Article  CAS  Google Scholar 

  14. G. Falini, M. Gazzano, and A. Ripamonti: Magnesium calcite crystallization from water-alcohol mixtures. Chem. Commun. 9, 1037 (1996).

    Article  Google Scholar 

  15. W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).

    Article  CAS  Google Scholar 

  16. P. Elstnerova, M. Friak, H.O. Fabritius, L. Lymperakis, T. Hickel, M. Petrov, S. Nikolov, D. Raabe, A. Ziegler, S. Hild, and J. Neugebauer: Ab initio study of thermodynamic, structural, and elastic properties of Mg-substituted crystalline calcite. Acta Biomater. 6, 4506 (2010).

    Article  CAS  Google Scholar 

  17. B. Pokroy, A.N. Fitch, F. Marin, M. Kapon, N. Adir, and E. Zolotoyabko: Anisotropic lattice distortions in biogenic calcite induced by intracrystalline organic molecules. J. Struct. Biol. 155, 96 (2006).

    Article  CAS  Google Scholar 

  18. A. Stashans and G. Chamba: A new insight on the role of Mg in calcite. Int. J. Quantum Chem. 111, 2436 (2011).

    Article  CAS  Google Scholar 

  19. S.J. Tsipursky and P.R. Buseck: Structure of magnesian calcite from sea urchins. Am. Mineral. 78, 775 (1993).

    CAS  Google Scholar 

  20. D.J. Barber, R.J. Reeder, and D.J. Smith: A TEM microstructural study of dolomite with curved faces (saddle dolomite). Contrib. Mineral. Petrol. 91, 82 (1985).

    Article  CAS  Google Scholar 

  21. K.J. Davis, P.M. Dove, L.E. Wasylenki, and J.J. De Yoreo: Morphological consequences of differential Mg2+ incorporation at structurally distinct steps on calcite. Am. Mineral. 89, 714 (2004).

    Article  CAS  Google Scholar 

  22. J. Paquette and R.J. Reeder: Relationship between surface structure, growth mechanism, and trace element incorporation in calcite. Geochim. Cosmochim. Acta 59, 735 (1995).

    Article  CAS  Google Scholar 

  23. T.H. Courtney: Mechanical Behavior of Materials (McGraw-Hill, New York, 1990).

    Google Scholar 

  24. A.G. Evans and T.G. Langdon: Structural ceramics. Prog. Mater. Sci. 21, 171 (1976).

    Article  CAS  Google Scholar 

  25. X. Long, M.J. Nasse, Y. Ma, and L. Qi: From synthetic to biogenic Mg-containing calcites: a comparative study using FTIR microspectroscopy. Phys. Chem. Chem. Phys. 14, 2255 (2012).

    Article  CAS  Google Scholar 

  26. X. Long, Y. Ma, and L. Qi: In vitro synthesis of high Mg calcite under ambient conditions and its implication for biomineralization process. Cryst. Growth Des. 11, 2866 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge support from NSF (DMR 0845212), the J.D. Watson Investigator Program (NYSTAR Contract No. C050017), the GI Bill (Chapter 33), and Hysitron Inc. We also acknowledge the Cornell Center for Materials Research (CCMR), a Materials Research Science and Engineering Center of the National Science Foundation (DMR 1120296), for both research support and use of the Electron Microscopy facility. We would also like to thank John Hunt for WDS measurements and Benjamin Shulman for help with sample preparation. Supporting Information is available online from MRS Communications or from the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shefford P. Baker.

Supporting Information for

Supplementary materials

Supplementary materials

For supplementary material for this article, please visit http://dx.doi.org/10.1557/mrc.2012.20

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunitake, M.E., Baker, S.P. & Estroff, L.A. The effect of magnesium substitution on the hardness of synthetic and biogenic calcite. MRS Communications 2, 113–116 (2012). https://doi.org/10.1557/mrc.2012.20

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2012.20

Navigation