Skip to main content
Log in

Improved oxygen surface exchange kinetics at grain boundaries in nanocrystalline yttria-stabilized zirconia

  • Research Letters
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Quantum simulations of oxygen incorporation at a Σ5 grain boundary in yttria-stabilized zirconia (YSZ), a common solid oxide fuel cells (SOFCs) electrolyte, show that the incorporation energy is reduced compared with YSZ with no grain boundaries. The simulation results are supported by electrochemical impedance spectroscopy (EIS) measurements conducted on a single crystalline YSZ substrate with nanogranular interlayered YSZ. EIS results showed that single crystalline YSZ membranes with nanogranular surface (i.e., high grain boundary densities) exhibit small electrode impedances than the reference single crystalline YSZ. The 20-nm-thick nanogranular YSZ interlayer was fabricated by atomic layer deposition and the performance for SOFCs with nanograined interlayer was increased by factor of 2 at operating temperatures between 350 and 450 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  1. G. Knoner, K. Reimann, R. Rower, U. Sodervall, and H.E. Schaeffer: Enhanced oxygen diffusivity in interfaces of nanocrystalline ZrO2⋅Y2O3. Proc. Natl. Acad. Sci. U.S.A. 100, 3860 (2003).

    Article  Google Scholar 

  2. I. Kosacki, C.M. Rouleau, P.F. Becher, J. Bentley, and D.H. Lowndesb: Surface/interface-related conductivity in nanometer thick YSZ films. Electrochem. Solid State Lett. 7, A459 (2004).

    Article  CAS  Google Scholar 

  3. H. Huang, T.M. Gür, Y. Saito, and F.B. Prinz: High ionic conductivity in ultrathin nanocrystalline gadolinia-doped ceria films. Appl. Phys. Lett. 89, 143107 (2006).

    Article  Google Scholar 

  4. J.H. Shim, C.C. Chao, H. Huang, and F.B. Prinz: Atomic layer deposition of yttria-stabilized zirconia for solid oxide fuel cells. Chem. Mater. 19, 3850 (2007).

    Article  CAS  Google Scholar 

  5. J.H. Shim, J.S. Park, T.P. Holme, K. Crabb, W. Lee, Y.B. Kim, X. Tian, T.M. Gür, and F.B. Prinz: Enhanced oxygen exchange and incorporation at surface grain boundaries on an oxide ion conductor. Acta Mater. 60, 1 (2012).

    Article  CAS  Google Scholar 

  6. G. Kresse and J. Furthmüller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  7. G. Kresse and J. Joubert: From ultrasoft pseudopotentials to the projector augmented-wave method. J. Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

  8. J. Perdew and A. Zunger: Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 23, 5048 (1982).

    Article  Google Scholar 

  9. H.J. Monkhorst and J.D. Pack: Special pointes for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  10. W. Lee, H.J. Jung, M. Lee, Y. Kim, J.S. Park, R. Sinclair, and F.B. Prinz: Oxygen surface exchange at grain boundaries of oxide ion conductors. Adv. Funct. Mater. 22, 965 (2012).

    Article  CAS  Google Scholar 

  11. W.C. Conner and J.L. Falconer: Spillover in heterogeneous catalysis. Chem. Rev. 95, 759 (1995).

    Article  CAS  Google Scholar 

  12. H. Huang, M. Nakamura, P. Su, R. Fasching, Y. Saito, and F.B. Prinz: High-performance ultrathin solid oxide fuel cells for low-temperature operation. J. Electrochem. Soc. 154, B20 (2007).

    Article  CAS  Google Scholar 

  13. S. Souza, S.J. Visco, and L.C. De Jonghe: Thin-film solid oxide fuel cell with high performance at low-temperature. Solid State Ionics 98, 57 (1997).

    Article  Google Scholar 

  14. T.P. Holme, R. Pornprasertsuk, and F. Prinz: Interpretation of low temperature solid oxide fuel cell electrochemical impedance spectra. J. Electrochem. Soc. 157, B64 (2010).

    Article  CAS  Google Scholar 

  15. Y. Kim, T. Holme, T.M. Gür, and F.B. Prinz: Surface-modified lowtemperature solid oxide fuel cell. Adv. Funct. Mater. 21, 4684 (2011).

    Article  CAS  Google Scholar 

  16. Y. Kim, J.S. Park, T.M. Gür, and F.B. Prinz: Oxygen activation over engineered surface grains on YDC/YSZ interlayered composite electrolyte for LT-SOFC. J. Power Sources 196, 19550 (2011).

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Turgut M. Gür for helpful discussion, and the members of Nanoscale Prototyping Laboratory at Stanford University for their support and suggestions. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joong Sun Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.S., Holme, T.P., Shim, J.H. et al. Improved oxygen surface exchange kinetics at grain boundaries in nanocrystalline yttria-stabilized zirconia. MRS Communications 2, 107–111 (2012). https://doi.org/10.1557/mrc.2012.18

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2012.18

Navigation