Skip to main content
Log in

Intrinsically low-resistance carbon nanotube-metal contacts mediated by topological defects

  • Research Letters
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Applying a first-principles computational approach, we study the electronic and charge transport properties of the interfaces between metals and capped carbon nanotubes (CNTs) with various arrangements of topological defects. Observing the length scaling of resistance, we first show that capped CNTs exhibit only one CNT-body-determined low-slope scaling and the resulting very low long-length-limit resistance. The intrinsically low resistance (absence of Schottky-barrier-dominated high-slope scaling) of capped CNTs is next analyzed by the local density of states, which shows the formation of unusual propagating-type metal-induced gap states originating from the topological defect states that are well connected with CNT edge and body states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  1. S.J. Tans, A.R.M. Verschueren, and C. Dekker: Room-temperature transistor based on a single carbon nanotube. Nature 393, 49 (1998).

    Article  CAS  Google Scholar 

  2. R. Martel, T. Schmidt, H.R. Shea, T. Hertel, and P. Avouris: Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447 (1998).

    Article  CAS  Google Scholar 

  3. A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai: Ballistic carbon nanotube field-effect transistors. Nature 424, 654 (2003).

    Article  CAS  Google Scholar 

  4. A.D. Franklin and Z. Chen: Length scaling of carbon nanotube transistors. Nature Nanotech. 5, 858 (2010).

    Article  CAS  Google Scholar 

  5. J. Svensson and E.E.B. Campbell: Schottky barriers in carbon nanotubemetal contacts. J. Appl. Phys. 110, 111101 (2011).

    Article  Google Scholar 

  6. S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, and P. Avouris: Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 89, 106801 (2002).

    Article  CAS  Google Scholar 

  7. V. Vitale, A. Curioni, and W. Andreoni: Metal-carbon nanotube contacts: The link between Schottky barrier and chemical bonding. J. Am. Chem. Soc. 130, 5848 (2008).

    Article  CAS  Google Scholar 

  8. Y. Zhang, N. Franklin, R. Chen, and H. Dai: Metal coating on suspended carbon nanotubes and its implication to metal-tube interaction. Chem. Phys. Lett. 331, 35 2000).

    Article  CAS  Google Scholar 

  9. Y.-H. Kim and Y.M. Byun: Diameter dependence of charge transport across carbon nanotube-metal contacts from first principles. J. Kor. Phys. Soc. 55, 299 (2009).

    Article  CAS  Google Scholar 

  10. Y.-H. Kim and H.S. Kim: Anomolous length scaling of carbon nanotubemetal contact resistance: An ab initio study. Appl. Phys. Lett. 100, 213113 (2012).

    Article  Google Scholar 

  11. G. Brinkmann, P.W. Fowler, D.E. Manolopoulos, and A.H.R. Palser: A census of nanotube caps. Chem. Phys. Lett. 315, 335 (1999).

    Article  CAS  Google Scholar 

  12. S. Reich, L. Li, and J. Robertson: Structure and formation energy of carbon nanotube caps. Phys. Rev. B 72, 165423 (2005).

    Article  Google Scholar 

  13. M. Khazaei, K.A. Dean, A.A. Farajian, and Y. Kawazoe: Field emission signature of pentagons at carbon nanotube caps. J. Phys. Chem. C 111, 6690 (2007).

    Article  CAS  Google Scholar 

  14. J.J. Palacios, P. Tarakeshwar, and D.M. Kim: Metal contacts in carbon nanotube field effect transistors: Beyond the Schottky barrier paradigm. Phys. Rev. B 77, 113403 (2008).

    Article  Google Scholar 

  15. C. Adessi, R. Avriller, X. Blase, A. Bournel, H.C. d’Honincthun, P. Dollfus, S. Fregonese, S. Galdin-Retailleau, A. Lopez-Bezanilla, C. Maneux, H.N. Nguyen, D. Querlioz, S. Roche, F. Triozon, and T. Zimmer: Multiscale simulation of carbon nanotube devices. C. R. Physique 10, 305 (2009).

    Article  CAS  Google Scholar 

  16. D. Mann, A. Javey, J. Kong, Q. Wang, and H.J. Dai: Ballistic transport in metallic nanotubes with reliable Pd ohmic contacts. Nano Lett. 3, 1541 (2003).

    Article  CAS  Google Scholar 

  17. Y. Nosho, Y. Ohno, S. Kishimoto, and T. Mizutani: Evidence of edge conduction at nanotube/metal contact in carbon nanotube devices. Jpn. J. Appl. Phys. 46, L474 (2007).

    Article  CAS  Google Scholar 

  18. Y.-H. Kim, J. Tahir-Kheli, P.A. Schultz, and W.A. Goddard III: First-principles approach to the charge-transport characteristics of monolayer molecular-electronics devices: Application to hexanedithiolate devices. Phys. Rev. B 73, 235419 (2006).

    Article  Google Scholar 

  19. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  20. SeqQuest Project (ver. 2.4), Sandia National Laboratories (http://dft.sandia.gov/Quest).

  21. S. Datta: Quantum Transport: Atom to Transistor (Cambridge University Press, Cambridge, England, 2005).

    Book  Google Scholar 

  22. J.G. Simmons: Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 1793 (1963).

    Article  Google Scholar 

  23. K. Nakada, M. Fujita, G. Dresselhaus, and M.S. Dresselhaus: Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954 (1996).

    Article  CAS  Google Scholar 

  24. T. Kawai, Y. Miyamoto, O. Sugino, and Y. Koga: Graphitic ribbons without hydrogen-termination: Electronic structures and stabilities. Phys. Rev. B 62, R16349 (2000).

    Article  CAS  Google Scholar 

  25. G.I. Lee, J.K. Kang, and Y.-H. Kim: Metal-Independent coherent electron tunneling through polymerized fullerene chains. J. Phys. Chem. C 112, 7029 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Science and Engineering Foundation (KOSEF, Grant No. 2008-02807) funded by the Ministry of Education, Science and Technology. H.S. Kim, H.S. Kim, and Y.H. Kim were also supported by the National Research Foundation (NRF, Grant No. 2010-0006910). J.K. Kang and G.I. Lee were also supported by the WCU program (R-31-2008-000-10055-0) and the Korea Center for Artificial Photosynthesis (NRF-2009-C1AAA001-2009-0093879).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeung Ku Kang.

Supplementary materials

Supplementary materials

For supplementary material for this article, please visit http://dx.doi.org/10.1557/mrc.2012.14

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H.S., Kim, H.S., Lee, G.I. et al. Intrinsically low-resistance carbon nanotube-metal contacts mediated by topological defects. MRS Communications 2, 91–96 (2012). https://doi.org/10.1557/mrc.2012.14

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2012.14

Navigation