Skip to main content
Log in

In situ small-angle x-ray scattering analysis of improved catalyst—support interactions through nitrogen modification

  • Research Letters
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

In situ small-angle x-ray scattering (SAXS) is used to investigate the electrochemical durability of Pt-Metal (Pt-M) catalysts sputtered onto nitrogen-modified high surface area carbon powder. The results demonstrate that nitrogen modification promotes catalyst durability through reduction of nanoparticle dissolution and coarsening. Although particle sizes of Pt-M on high surface area carbon supports can be difficult to determine with transmission electron microscopy (TEM), a novel SAXS method has been employed to calculate particle size. SAXS analysis shows that the Pt-M nanoparticle size distribution remained stable for 3000 electrochemical cycles after nitrogen modification, whereas the unmodified support material leads to Pt-M nanoparticle instabilities. These results for industrial-relevant catalyst/support architectures underscore the potential of nitrogen-modified carbon support structures for enhanced Pt-M catalyst durability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  1. X. Xu and S. Ye: High-temperature fuel cell membranes based on mechanically stable para-ordered polybenzimidazole prepared by direct casting. J. Power Sources 172, 145 (2007).

    Article  Google Scholar 

  2. B. Shyam, T.M. Arruda, S. Murkjee, and D.E. Ramaker: Effect of RuOxHy island size on PtRu particle aging in methanol. J. Phys. Chem. C 113, 19713 (2009).

    Article  CAS  Google Scholar 

  3. B. Avasarala, R. Moore, and P. Haldar: Surface oxidation of carbon supports due to potential cycling under PEM fuel cell conditions. Electrochim. Acta 55, 4765 (2010).

    Article  CAS  Google Scholar 

  4. H.S. Choo, T. Kinumoto, S.K. Leong, Y. Iriyama, T. Abe, and Z. Ogumi: Mechanism for electrochemical oxidation of highly oriented pyrolytic graphite in sulfuric acid solution. J. Electrochem. Soc. 154, B1017, (2007).

    Article  CAS  Google Scholar 

  5. R. Borup, J. Meyers, B. Pivovar, Y.S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J.E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K.I. Kimijima, and N. Iwashita: Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chemical Reviews. 107, 3904 (2007).

    Article  CAS  Google Scholar 

  6. S. Ye, A.K. Vijh, and L.H. Dao: A new fuel cell electrocatalyst based on highly porous carbonized polyacrylonitrile foam with very low platinum loading. J. Electrochem. Soc. 143, L7 (1996).

    Article  CAS  Google Scholar 

  7. S.C. Roy, P.A. Christensen, A. Hamnett, K.M. Thomas, and V. Trapp: Direct methanol fuel cell cathodes with sulfur and nitrogen-based carbon functionality. J. Electrochem. Soc. 143, 3073 (1996).

    Article  CAS  Google Scholar 

  8. Y.K. Zhou, R. Pasquarelli, T. Holme, J. Berry, D. Ginley, and R. O’Hayre: Improving PEM fuel cell catalyst activity and durability using nitrogendoped carbon supports: observations from model Pt/HOPG systems. J. Mater. Chem. 19, 7830 (2009).

    Article  CAS  Google Scholar 

  9. Y.G. Chen, J.J. Wang, H. Liu, R.Y. Li, X.L. Sun, S. Ye, and S. Knights: Enhanced stability of Pt electrocatalysts by nitrogen doping in CNTs for PEM fuel cells. Electrochem. Commun. 11, 2071 (2009).

    Article  CAS  Google Scholar 

  10. S. Maldonado and K.J. Stevenson: Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes. J. Phys. Chem. B 109, 4707 (2005).

    Article  CAS  Google Scholar 

  11. S. Ye, K.A. Vijh, and L.H. Dao: A new fuel cell electrocatalyst based on carbonized polyacrylonitrile foam. J. Electrochem. Soc. 144, 90 (1997).

    Article  CAS  Google Scholar 

  12. T. Maiyalagan, B. Viswanathan, and U.V. Varadaraju: Nitrogen containing carbon nanotubes as supports for Pt–Alternate anodes for fuel cell applications. Electrochem. Comm. 7, 905 (2005).

    Article  CAS  Google Scholar 

  13. T. Holme, Y.K. Zhou, R. Pasquarelli, and R. O’Hayre: First principles study of doped carbon supports for enhanced platinum catalysts. Phys. Chem. Chem. Phys. 12, 9461 (2010).

    Article  CAS  Google Scholar 

  14. M.N. Groves, A.S.W. Chan, C. Malardier-Jugroot, and M. Jugroot: Improving platinum catalyst binding energy to graphene through nitrogen doping. Chem. Phys. Lett. 481, 214 (2009).

    Article  CAS  Google Scholar 

  15. S. Pylypenko, A. Queen, T.S. Olson, A. Dameron, K. O’Neill, K.C. Neyerlin, B. Pivovar, H.N. Dinh, D.S. Ginley, T. Gennett, and R. O’Hayre: Tuning carbon-based fuel cell catalyst support structures via nitrogen functionalization. I. Investigation of structural and compositional modification of highly oriented pyrolytic graphite model catalyst supports as a function of nitrogen implantation dose. J. Phys. Chem. C 115, 13667 (2011).

    Article  CAS  Google Scholar 

  16. S. Pylypenko, A. Queen, T.S. Olson, A. Dameron, K. O’Neill, K.C. Neyerlin, B. Pivovar, H.N. Dinh, D.S. Ginley, T. Gennett, and R. O’Hayre: Tuning carbon-based fuel cell catalyst support structures via nitrogen functionalization. II. Investigation of durability of Pt–Ru nanoparticles supported on highly oriented pyrolytic graphite model catalyst supports as a function of nitrogen implantation dose. J. Phys. Chem. C 115, 13676 (2011).

    Article  CAS  Google Scholar 

  17. A. Dameron, T.S. Olson, S.T. Christensen, J.E. Leisch, K.E. Hurst, S. Pylypenko, J.B. Bult, D.S. Ginley, R. O’Hayre, H.N. Dinh, and T. Gennett: Pt–Ru alloyed fuel cell catalysts sputtered from a single alloyed target. ACS Catal. 1, 1307 (2011).

    Article  CAS  Google Scholar 

  18. C. Yu, S. Koh, J. Leisch, M. Toney, and P. Strasser: Size and composition distribution dynamics of alloy nanoparticle electrocatalysts probed by anomalous small angle x-ray scattering (ASAXS). Faraday Discuss. 140, 283 (2008).

    Article  CAS  Google Scholar 

  19. C. Yu: Structural dynamics of Pt and Pt alloy nanoparticle probed by x-ray scattering techniques. Ph.D. Thesis, University of Houston, August 2010.

    Google Scholar 

  20. J. Ilavsky and P.R. Jemian: Irena: tool suite for modeling and analysis of small-angle scattering. J. Appl. Crystallogr. 42, 347 (2009).

    Article  CAS  Google Scholar 

  21. A.J. Allen, S. Krueger, G. Skandan, G.G. Long, H. Hahn, H.M. Kerch, J.C. Parker, and M.N. Ali: Microstructural evolution during the sintering of nanostructured ceramic oxides. J. Am. Ceram. Soc. 79, 1201 (1996).

    Article  CAS  Google Scholar 

  22. L.C. Gontard, R.E. Dunin-Borkowski, D. Ozkaya, T. Hyde, P.A. Midgley, and P. Ash: Crystal size and shape analysis of Pt nanoparticles in two and three dimensions. J. Phys. Conf. Ser. 26, 367 (2006).

    Article  Google Scholar 

  23. T. Hyde: Crystallite size analysis of supported platinum catalysts by XRD. Platinum Met. Rev. 52, 129 (2008).

    Article  Google Scholar 

  24. Y. Zhou, K. Neyerlin, T.S. Olson, S. Pylypenko, J. Bult, H.N. Dinh, T. Gennett, Z. Shao, and R. O’Hayre: Enhancement of Pt and Pt-alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports. Energy Environ. Sci. 3, 1437 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was in cooperation with SLAC National Accelerator Laboratory. The work at CSM is supported by the Army Research Office under Grant No. W911NF-09-1-0528. The work at NREL is supported by the US Department of Energy EERE, FCT Program, under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. The authors also acknowledge Electron Microscopy Laboratory at CSM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan O’Hayre.

Supplementary materials

Supplementary materials

For supplementary material for this article, please visit http://dx.doi.org/10.1557/mrc.2012.13

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wood, K.N., Christensen, S.T., Pylypenko, S. et al. In situ small-angle x-ray scattering analysis of improved catalyst—support interactions through nitrogen modification. MRS Communications 2, 85–89 (2012). https://doi.org/10.1557/mrc.2012.13

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2012.13

Navigation