Skip to main content
Log in

Low-temperature aqueous solution processed fluorine-doped zinc tin oxide thin-film transistors

  • Rapid Communications
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Novel fluorine-doped zinc tin oxide (ZTO:F) thin-film transistors (TFTs) have been fabricated using an aqueous solution process. Exploiting hydrolysis and condensation reactions in an aqueous solution process, organic-free ZTO:F thin films were fabricated at a low temperature of 250 °C. The fabricated TFT device shows a field-effect mobility of 2.85 cm2/V s, on-to-off current ratios exceeding 107, and sub-threshold swings of 0.83 V/dec. The ZTO:F TFT also displays high operational stability of ΔV th = 1.73 V despite incorporation of a large amount of fluorine and use of a low-temperature annealing process. This is attributed to effective passivation of oxygen vacancy diffusion by metal fluoride bonds at the ZTO:F channel/gate dielectric interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Table 1
Figure 3
Figure 4

Similar content being viewed by others

References

  1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono: Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488–492 (2004).

    Article  CAS  Google Scholar 

  2. G. Adamopoulos, A. Bashir, P.H. Wobkenberg, D.D.C. Bradley, and T.D. Anthopoulos: Electronic properties of ZnO field-effect transistors fabricated by spray pyrolysis in ambient air. Appl. Phys. Lett. 95, 133507 (2009).

    Article  Google Scholar 

  3. G. Adamopoulos, A. Bashir, S. Thomas, W.P. Gillin, S. Georgakopoulos, M. Shkunov, M.A. Baklar, N. Stingeline, R.C. Maher, L.F. Cohen, D.D.C. Bradley, and T.D. Anthopoulos: Spray-deposited Li-doped ZnO transistors with electron mobility exceeding 50 cm2/V·s. Adv. Mater. 22, 4764–4769 (2010).

    Article  CAS  Google Scholar 

  4. K.K. Banger, Y. Yamashita, K. Mori, R.L. Peterson, T. Leedham, J. Rickard, and H. Sirringhaus: Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’ process. Nat. Mater. 10, 45–50 (2011).

    Article  CAS  Google Scholar 

  5. C.J. Brinker and G.W. Scherer: Sol–Gel Science (Academic Press, Boston, 1990), p. 42.

    Google Scholar 

  6. H.Q. Chiang, J.F. Wager, R.L. Hoffman, J. Jeong, and D.A. Keszler: High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer. Appl. Phys. Lett. 86, 013503 (2005).

    Article  Google Scholar 

  7. C. Avis and J. Jang: A high performance inkjet printed zinc tin oxide transparent thin-film transistor manufactured at the maximum process temperature of 300 °C and its stability test. Electrochem. Solid-State Lett. 14, J9–J11 (2011).

    Article  CAS  Google Scholar 

  8. S.J. Seo, Y.H. Hwang, and B.S. Bae: Postannealing process for low temperature processed sol–gel zinc tin oxide thin film transistors. Electrochem. Solid-State Lett. 13, H357–H359 (2010).

    Article  CAS  Google Scholar 

  9. O.K. Srivastava and E.A. Secco: Studies on metal hydroxy compounds. I. Thermal analyses of zinc derivatives ϵ-Zn(OH)2, Zn5(OH)8Cl2·H2O, β-ZnOHCl, and ZnOHF. Can. J. Chem. 45, 579 (1967).

    Article  CAS  Google Scholar 

  10. F. Seby, M. Potin-Gautier, E. Giffaut, and O.F.X. Donard: A critical review of thermodynamic data for inorganic tin species. Geochim. Cosmochim. Acta 65, 3041–3053 (2001).

    Article  CAS  Google Scholar 

  11. M. Niederberger and N. Pinna: Metal Oxide Nanoparticles in Organic Solvents: Synthesis, Formation, Assembly and Application (Springer, London, 2009), p.11.

    Book  Google Scholar 

  12. K. Tsukuma, T. Akiyama, and H. Imai: Liquid phase deposition film of tin oxide. J. Non-Cryst. Solids 210, 48–54 (1997).

    Article  CAS  Google Scholar 

  13. D.H. Lee, Y.J. Chang, G.S. Herman, and C.H. Chang: A general route to printable high-mobility transparent amorphous oxide semiconductors. Adv. Mater. 19, 843–847 (2007).

    Article  CAS  Google Scholar 

  14. Y. Hayashi, K. Kondo, K. Murai, T. Moriga, I. Nakabayashim, H. Fukumoto, and K. Tominaga: ZnO–SnO2 transparent conductive films deposited by opposed target sputtering system of ZnO and SnO2 targets. Vacuum 74, 607–611 (2004).

    Article  CAS  Google Scholar 

  15. S.J. Seo, C.G. Choi, Y.H. Hwang, and B.S. Bae: High performance solution-processed amorphous zinc tin oxide thin film transistor. J. Phys. D: Appl. Phys. 42, 035106 (2009).

    Article  Google Scholar 

  16. S.K. Park, Y.H. Kim, H.S. Kim, and J.I. Han: High performance solution-processed and lithographically patterned zinc-tin oxide thin-film transistors with good operational stability. Electrochem. Solid-State Lett. 12, H256–H258 (2009).

    Article  CAS  Google Scholar 

  17. Y.M. Jeong, C.D. Bae, D.J. Kim, K.K. Song, K.H. Woo, H.J. Shin, G. Cao, and J.H. Moon: Bias-stress-stable solution-processed oxide thin film transistors. Appl. Mater. Interfaces 2, 611–615 (2010).

    Article  CAS  Google Scholar 

  18. S. Oswald and S. Baunack: Factor analysis and XPS-data preprocessing for non-conducting samples. Fresen. J. Anal. Chem. 365, 59–62 (1999).

    Article  CAS  Google Scholar 

  19. J.K. Jeong, H.W. Yang, J.H. Jeong, Y.G. Mo, and H.D. Kim: Origin of threshold voltage instability in indium–gallium–zinc oxide thin film transistors. Appl. Phys. Lett. 93, 123508 (2008).

    Article  Google Scholar 

  20. K. Nomura, T. Kamiya, M. Hirano, and H. Hosono: Origins of threshold voltage shifts in room-temperature deposited and annealed a-In–Ga–Zn–O thin-film transistors. Appl. Phys. Lett. 95, 013502 (2009).

    Article  Google Scholar 

  21. C.S. Lai, W.C. Wu, T.S. Chao, J.H. Chen, J.C. Wang, L.-L. Tany, and N. Rowell: Suppression of interfacial reaction for HfO2 on silicon by pre-CF4 plasma treatment. Appl. Phys. Lett. 89, 072904 (2006).

    Article  Google Scholar 

  22. H.-H. Tseng, P.J. Tobin, E.A. Hebert, S. Kalpat, M.E. Ramón, L. Fonseca, Z.X. Jiang, J.K. Schaeffer, R.I. Hegde, D.H. Triyoso, D.C. Gilmer, W.J. Taylor, C.C. Capasso, O. Adetutu, D. Sing, J. Conner, E. Luckowski, B.W. Chan, A. Haggag, S. Backer, R. Noble, M. Jahanbani, Y.H. Chiu, and B.E. White: Defect passivation with fluorine in a TaxCy/high-k gate stack for enhanced device threshold voltage stability and performance. IEDM Tech. Dig. 29.4.1–29.4.4 (2005). Available at http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1609447&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3DDefect+passivation+with+fluorine+in+a+TaxCy%2Fhigh-k+gate+stack+for+enhanced+device+threshold+voltage+stability+and+performance

    Google Scholar 

  23. A.I. Martinez, L. Huerta, J.M. O-Rueda de Leon, D. Acosta, O. Malik, and M. Aguilar: Physicochemical characteristics of fluorine doped tin oxide films. J. Phys. D: Appl. Phys. 39, 5091–5096 (2006).

    Article  CAS  Google Scholar 

  24. Y. Kawamoto, K. Ogura, M. Shojiya, M. Takahashi, and K. Kadono: F1s XPS of fluoride glasses and related fluoride crystals. J. Fluorine Chem. 96, 135–139 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was financially supported by the Ministry of Knowledge Economy (MKE) and Korea Institute for Advancement in Technology (KIAT) through the Workforce Development Program in Strategic Technology. This research was also supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST) (CAFDC-20100009898).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byeong-Soo Bae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeon, JH., Hwang, Y.H., Jin, J. et al. Low-temperature aqueous solution processed fluorine-doped zinc tin oxide thin-film transistors. MRS Communications 2, 17–22 (2012). https://doi.org/10.1557/mrc.2012.1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2012.1

Navigation