Skip to main content
Log in

Dominant shear bands observed in amorphous ZrCuAl nanowires under simulated compression

  • Rapid Communications
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We observed the formation of dominant shear bands in model ZrCuAl metallic glass (MG) nanowires (18-nm-long) in molecular dynamics simulations, which implies size-independent incipient plasticity in MG materials. The MG nanowires were prepared using the simulated casting technique to ensure proper relaxation of sample surfaces. Under uniaxial compression, shear bands initiate at the surfaces and lead to reduced icosahedral short-range order. The shear band formation is sensitive to sample thermal history, which calls for careful consideration of sample preparation effects in both experimental and numerical studies of size effect in MG samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. C. Schuh, T. Hufnagel, and U. Ramamurty: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067–4109 (2007).

    Article  CAS  Google Scholar 

  2. A.L. Greer: Metallic glasses…on the threshold. Mater. Today 12, 14–22 (2009).

    Article  CAS  Google Scholar 

  3. C.A. Volkert, A. Donohue, and F. Spaepen: Effect of sample size on deformation in amorphous metals. J. Appl. Phys. 103, 083539 (2008).

    Article  Google Scholar 

  4. K. Nakayama, Y. Yokoyama, T. Ono, M. Chen, K. Akiyama, T. Sakurai, and A. Inoue: Controlled formation and mechanical characterization of metallic glassy nanowires. Adv. Mater. 22, 872 (2010).

    Article  CAS  Google Scholar 

  5. D. Jang and J.R. Greer: Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Nat. Mater. 9, 215–219 (2010).

    Article  CAS  Google Scholar 

  6. H. Guo, P.F. Yan, Y.B. Wang, J. Tan, Z.F. Zhang, M.L. Sui, and E. Ma: Tensile ductility and necking of metallic glass. Nat. Mater. 6, 735–739 (2007).

    Article  CAS  Google Scholar 

  7. A.R. Yavari, K. Georgarakis, W.J. Botta, A. Inoue, and G. Vaughan: Homogenization of plastic deformation in metallic glass foils less than one micrometer thick. Phys. Rev. B 82, 172202 (2010).

    Article  Google Scholar 

  8. A. Bharathula, S.W. Lee, W.J. Wright, and K.M. Flores: Compression testing of metallic glass at small length scales: effects on deformation mode and stability. Acta Mater. 58, 5789–5796 (2010).

    Article  CAS  Google Scholar 

  9. D. Jang, C.T. Gross, and J.R. Greer: Effects of size on the strength and deformation mechanism in Zr-based metallic glasses. Int. J. Plast. 27, 858–867 (2011).

    Article  CAS  Google Scholar 

  10. C.Q. Chen, Y.T. Pei, O. Kuzmin, Z.F. Zhang, E. Ma, and J. Hosson: Intrinsic size effects in the mechanical response of taper-free nanopillars of metallic glass. Phys. Rev. B 83, 180201 (2011).

    Article  Google Scholar 

  11. X.L. Wu, Y.Z. Guo, Q. Wei, and W.H. Wang: Prevalence of shear banding in compression of Zr41Ti14Cu12.5Ni10Be22.5 pillars as small as 150 nm in diameter. Acta Mater. 57, 3562–3571 (2009).

    Article  CAS  Google Scholar 

  12. A. Dubach, R. Raghavan, J.F. Löffler, J. Michler, and U. Ramamurty: Micropillar compression studies on a bulk metallic glass in different structural states. Scripta Mater. 60, 567–570 (2009).

    Article  CAS  Google Scholar 

  13. B.E. Schuster, Q. Wei, T.C. Hufnagel, and K.T. Ramesh: Size-independent strength and deformation mode in compression of a Pd-based metallic glass. Acta Mater. 56, 5091–5100 (2008).

    Article  CAS  Google Scholar 

  14. Y. Shi and M. Falk: Atomic-scale simulations of strain localization in three-dimensional model amorphous solids. Phys. Rev. B 73, 214201 (2006).

    Article  Google Scholar 

  15. Y.Q. Cheng, A.J. Cao, and E. Ma: Correlation between the elastic modulus and the intrinsic plastic behavior of metallic glasses: the roles of atomic configuration and alloy composition. Acta Mater. 57, 3253–3267 (2009).

    Article  CAS  Google Scholar 

  16. Q.K. Li and M. Li: Molecular dynamics simulation of intrinsic and extrinsic mechanical properties of amorphous metals. Intermetallics 14, 1005–1010 (2006).

    Article  CAS  Google Scholar 

  17. Y.Q. Cheng, A.J. Cao, H.W. Sheng, and E. Ma: Local order influences initiation of plastic flow in metallic glass: effects of alloy composition and sample cooling history. Acta Mater. 56, 5263–5275 (2008).

    Article  CAS  Google Scholar 

  18. Y. Shi: Size-independent shear band formation in amorphous nanowires made from simulated casting. Appl. Phys. Lett. 96, 121909 (2010).

    Article  Google Scholar 

  19. Y. Cheng, E. Ma, and H. Sheng: Atomic level structure in multicomponent bulk metallic glass. Phys. Rev. Lett. 102, 245501 (2009).

    Article  CAS  Google Scholar 

  20. Y. Shi and M. Falk: Does metallic glass have a backbone? The role of percolating short range order in strength and failure. Scr. Mater. 54, 381–386 (2006).

    Article  CAS  Google Scholar 

  21. Y. Yokoyama, T. Yamasaki, P.K. Liaw, and A. Inoue: Study of the structural relaxation-induced embrittlement of hypoeutectic Zr-Cu-Al ternary bulk glassy alloys. Acta Mater. 56, 6097–6108 (2008).

    Article  CAS  Google Scholar 

  22. X.J. Gu, S.J. Poon, G.J. Shiflet, and J.J. Lewandowski: Ductile-to-brittle transition in a Ti-based bulk metallic glass. Scr. Mater. 60, 1027–1030 (2009).

    Article  CAS  Google Scholar 

  23. G. Kumar, D. Rector, R.D. Conner, and J. Schroers: Embrittlement of Zr-based bulk metallic glasses. Acta Mater. 57, 3572–3583 (2009).

    Article  CAS  Google Scholar 

  24. H. Zhang, S. Maiti, and G. Subhash: Evolution of shear bands in bulk metallic glasses under dynamic loading. J. Mech. Phys. Solids 56, 2171–2187 (2008).

    Article  CAS  Google Scholar 

  25. C.J. Lee, Y.H. Lai, J.C. Huang, X.H. Du, L. Wang, and T.G. Nieh: Strength variation and cast defect distribution in metallic glasses. Scr. Mater. 63, 105–108 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank Michael Falk, Craig Maloney, Liping Huang, Despina Louca and Peter K. Liaw for stimulating discussions. Y.F.S. acknowledges financial support from NSF under Grant No. CMMI-1031408 and H.W.S. from NSF under Grant No. DMR-0907325. The molecular dynamics simulations were carried out in LAMMPS using the computational facilities of the Computational Center for Nanotechnology Innovations (CCNI) at RPI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfeng Shi.

Supplementary materials

Supplementary materials

For supplementary material for this article, please visit http://dx.doi.org/10.1557/mrc.2011.26

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, Q., Sheng, H.W. & Shi, Y. Dominant shear bands observed in amorphous ZrCuAl nanowires under simulated compression. MRS Communications 2, 13–16 (2012). https://doi.org/10.1557/mrc.2011.26

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2011.26

Navigation