Skip to main content

Advertisement

Log in

Comparative study on the influence of the content and functionalization of alginate matrices on K-562 cell viability and differentiation

  • Biomedical Materials, Regenerative Medicine and Drug Delivery
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Microencapsulation of functioning cells for transplantation therapies is particularly promising, but the cells must retain their proper physiology and viability after being encapsulated. K-562 cells are multipotential and exhibit erythroid, megakaryocytic, or granulocytic properties that can be exploited by using an array of physiologically differentiating factors. The potential for cell differentiation makes it attractive the use of K-562 cells as functional model to the assessment of the effects of encapsulation on cell viability and physiology. Thus, alginate and hybrid alginate matrices were produced by extrusion technique for K-562 cell encapsulation. The produced systems were composed of bare alginate (1–3 wt%) and alginate in combination with chitosan or silica. The resulting materials were characterized by dynamic laser scattering, zeta potential measurements, small-angle X-ray scattering, and Fourier transform infrared spectroscopy. To assess viability, the encapsulated cells were subjected to the Trypan blue exclusion technique and NAD(P)H-dependent oxidoreductase (MTT) assays; hemin-induced erythroid differentiation capacity was also evaluated. The encapsulated alginate-based systems were shown to be monomodal and bimodal, depending on the nature of the capsule, with mean sizes in the range between 414 and 4.129 nm. Encapsulated cells exhibited viability ratios compatible with their use for prolonged cell cultures. Erythroid differentiation occurred in the range between 39 and 44%. The present results allow the consideration of the viability of therapeutic cells encapsulated in both bare alginate and in hybrid matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. P. Newsholme, V.F. Cruzat, K.N. Keane, R. Carlessi, and P.I. Homem de Bittencourt, Jr: Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem. J. 473, 4527 (2016).

    Article  CAS  Google Scholar 

  2. K.N. Keane, V.F. Cruzat, R. Carlessi, P.I. Homem de Bittencourt, Jr, and P. Newsholme: Molecular events linking oxidative stress and inflammation to insulin resistance and β-cell dysfunction. Oxid. Med. Cell. Longevity 2015, 1–15 (2015).

    Article  Google Scholar 

  3. R.M. Carlessi, Y. Chen, J. Rowlands, V.F. Cruzat, K.N. Keane, L. Eagan, R. Mamotte, R. Stokes, J.E. Gunton, P.I. Homem de Bittencourt, Jr, and P. Newsholme: GLP-1 receptor signalling promotes β-cell glucose metabolism via mTOR-dependent HIF-1α activation. Sci. Rep. 7, 2661 (2017).

    Article  CAS  Google Scholar 

  4. T. Richardson, P.N. Kumta, and I. Banerjee: Alginate encapsulation of human embryonic stem cells to enhance directed differentiation to pancreatic islet-like cells. Tissue Eng., Part A 20, 3198 (2014).

    Article  CAS  Google Scholar 

  5. M. Boido, M. Ghibaudi, P. Gentile, E. Favaro, R. Fusaro, and C. Tonda-Turo: Chitosan-based hydrogel to support the paracrine activity of mesenchymal stem cells in spinal cord injury treatment. Sci. Rep. 9, 1 (2019).

    Article  CAS  Google Scholar 

  6. R. Komeri and J. Muthu: Injectable, cytocompatible, elastic, free radical scavenging, and electroconductive hydrogel for cardiac cell encapsulation. Colloids Surf., B 157, 381 (2017).

    Article  CAS  Google Scholar 

  7. J. Wang, Z. Ding, F. Zhang, and W. Ye: Recent development in cell encapsulations and their therapeutic applications. Mater. Sci. Eng., C 77, 1247 (2017).

    Article  CAS  Google Scholar 

  8. J.W. Lee, H. An, and K.Y. Lee: Introduction of N-cadherin-binding motif to alginate hydrogels for controlled stem cell differentiation. Colloids Surf., B 155, 229 (2017).

    Article  CAS  Google Scholar 

  9. J. Xu, Y. He, J. Ma, and Q. Ye: Coating a shell on alginate microsphere by liquid phase deposition. Mater. Lett. 188, 152 (2017).

    Article  CAS  Google Scholar 

  10. A. Suarez-Arnedo, D.M. Narváez, P. Sarmiento, L. Bocanegra, F. Salcedo, C. Muñoz-Camargo, H. Groot, and J.C. Cruz: Tridimensional alginate disks of tunable topologies for mammalian cell encapsulation. Anal. Biochem. 574, 31 (2019).

    Article  CAS  Google Scholar 

  11. G. Choe, S. Kim, J. Park, J. Park, S. Kim, Y.S. Kim, Y. Ahn, D. Jung, D.R. Williams, and J.Y. Lee: Anti-oxidant activity reinforced reduced graphene oxide/alginate microgels: Mesenchymal stem cell encapsulation and regeneration of infarcted hearts. Biomaterials 225, 1 (2019).

    Article  CAS  Google Scholar 

  12. V.H. dos Santos, J.P.H. Pfeifer, J.B. de Souza, F.C. Stievani, C.A. Hussni, M.A. Golim, E. Deffune, and A.L.G. Alves: Evaluation of alginate hydrogel encapsulated mesenchymal stem cell migration in horses. Res. Vet. Sci. 124, 38 (2019).

    Article  CAS  Google Scholar 

  13. P. Qiao, J. Wang, Q. Xie, F. Li, L. Dong, and T. Xu: Injectable calcium phosphate–alginate–chitosan microencapsulated MC3T3-E1 cell paste for bone tissue engineering in vivo. Mater. Sci. Eng., C 33, 4633 (2013).

    Article  CAS  Google Scholar 

  14. J. Venkatesan, I. Bhatnagar, P. Manivasagan, K. Kang, and S. Kim: Alginate composites for bone tissue engineering: A review. Int. J. Biol. Macromol. 72, 269 (2014).

    Article  CAS  Google Scholar 

  15. J.F.A. Valente, T.A.M. Valente, P. Alves, P. Ferreira, A. Silva, and I.J. Correia: Alginate based scaffolds for bone tissue engineering. Mater. Sci. Eng., C 32, 2596 (2012).

    Article  CAS  Google Scholar 

  16. A. Grigore, B. Sarker, B. Fabry, A.R. Boccaccini, and R. Detsch: Behavior of encapsulated MG-63 cells in RGD and gelatine-modified alginate hydrogels. Tissue Eng., Part A 20, 2140 (2014).

    Article  CAS  Google Scholar 

  17. E. Santos, J.L. Pedraz, R.M. Hernández, and G. Orive: Therapeutic cell encapsulation: Ten steps towards clinical translation. J. Control. Release 170, 1 (2013).

    Article  CAS  Google Scholar 

  18. Z. Naghizadeh, A. Karkhaneh, and A. Khojasteh: Self-crosslinking effect of chitosan and gelatin on alginate based hydrogels: Injectable in situ forming scaffolds. Mater. Sci. Eng., C 89, 256 (2018).

    Article  CAS  Google Scholar 

  19. A. Kosik, U. Luchowska, and W. Święszkowski: Electrolyte alginate/poly-L-lysine membranes for connective tissue development. Mater. Lett. 184, 104 (2016).

    Article  CAS  Google Scholar 

  20. A. King, S. Sandler, and A. Andersson: The effect of host factors and capsule composition on the cellular overgrowth on implanted alginate capsules. J. Biomed. Mater. Res. 57, 374 (2001).

    Article  CAS  Google Scholar 

  21. H.A. Clayton, N.J. London, P.S. Colloby, P.R. Bell, and R.F. James: The effect of capsule composition on the biocompatibility of alginate-poly-l-lysine capsules. J. Microencapsul. 8, 221 (1991).

    Article  CAS  Google Scholar 

  22. T. Coradin, N. Nassif, and J. Livage: Silica–alginate composites for microencapsulation. Appl. Microbiol. Biotechnol. 61, 429 (2003).

    Article  CAS  Google Scholar 

  23. D. Hanahan and R.A. Weinberg: Hallmarks of cancer: The next generation. Cell 144, 646 (2011).

    Article  CAS  Google Scholar 

  24. X.F. Huo, J. Yu, H. Peng, Z.W. Du, X.L. Liu, Y.N. Ma, X. Zhang, Y. Zhang, H.L. Zhao, and J.W. Zhang: Differential expression changes in K562 cells during the hemin-induced erythroid differentiation and the phorbol myristate acetate (PMA)-induced megakaryocytic differentiation. Mol. Cell. Biochem. 292, 155 (2006).

    Article  CAS  Google Scholar 

  25. A.R. Green, S. Rockman, E. DeLuca, and C.G. Begley: Induced myeloid differentiation of K562 cells with downregulation of erythroid and megakaryocytic transcription factors: A novel experimental model for hemopoietic lineage restriction. Exp. Hematol. 21, 525 (1993).

    CAS  Google Scholar 

  26. B. Balan, K. Trifkovi, V. SorCevi, S. Markovi, R. Pjanovi, V. Nedovi, and B. Burgaski: Novel resveratrol delivery systems based on alginate-sucrose and alginate-chitosan microbeads containing liposomes. Food Hydrocolloids 61, 832 (2016).

    Article  CAS  Google Scholar 

  27. N.B. Colthup: Introduction to Infrared and Raman Spectroscopy (Academic Press, New York, 1964).

    Google Scholar 

  28. E.C. Morais, R. Brambilla, G.G. Correa, V. Dalmoro, and J.H. Z Santos: Imprinted silicas for paracetamol preconcentration prepared by the sol–gel process. J. Sol-Gel Sci. Technol. 83, 90 (2017).

    Article  CAS  Google Scholar 

  29. S. Mazzitelli, L. Capretto, F. Quinci, R. Piva, and C. Nastruzzi: Preparation of cell-encapsulation devices in confined microenvironment. Adv. Drug Deliv. Rev. 65, 1533 (2013).

    Article  CAS  Google Scholar 

  30. G. Simó, E. Fernández-Fernández, J. Vila-Crespo, V. Ruipérez, and J.M. Rodríguez-Nogales: Research progress in coating techniques of alginate gel polymer for cell encapsulation. Carbohydr. Polym. 170, 1 (2017).

    Article  CAS  Google Scholar 

  31. W. Strober: Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol. 3, A.3B.1–A.3B.2 (2001).

    Google Scholar 

  32. C.B. Lozzio and B.B. Lozzio: Human chronic myelogenous leukemia cell line with positive philadelphia chromosoma. Blood 45, 321 (1975).

    Article  CAS  Google Scholar 

  33. H.P. Koeffler and D.W. Golde: Human myeloid leukemia cell lines–A review. Blood 56, 344 (1980).

    Article  CAS  Google Scholar 

  34. F. Erard, A. Dean, and A.N. Schechter: Inhibitors of cell division reversibly modify hemoglobin concentration in human erythroleukemia K-562 cells. Blood 58, 1236 (1981).

    Article  CAS  Google Scholar 

  35. C. Luisi-De Luca, T. Mitchell, D. Spriggs, and D. Kufe: Induction of terminal differentiation in human K-562 erythroleukemia cells by arabinofuranosyl cytosine. J. Clin. Invest. 74, 821 (1984).

    Article  Google Scholar 

  36. P.T. Rowley, B.M. Ohlson-Wilhem, B.A. Farley, and S. La Bella: Inducers of erythroid differentiation in K-562 human leukemia cells. Expl. Hematol. 9, 32 (1981).

    CAS  Google Scholar 

  37. K. Todokoro, S. Kanazawa, H. Amanuma, and Y. Ikawa: Specific binding of erythropoietin to its receptor on responsive mouse erythroleukemia cells. Proc. Natl. Acad. Sci. U. S. A. 84, 4126 (1987).

    Article  CAS  Google Scholar 

  38. S. Zhang, K. Xu, M.A. Darabi, Q. Yuan, and M. Xing: Mussel-inspired alginate gel promoting the osteogenic differentiation of mesenchymal stem cells and anti-infection. Mater. Sci. Eng. C 69, 496 (2016).

    Article  CAS  Google Scholar 

  39. S.C-Y. Lin, Y. Wang, D.F. Wertheim, and A.G.A. Coombes: Production and in vitro evaluation of macroporous, cell-encapsulating alginate fibres for nerve repair. Mater. Sci. Eng., C 73, 653 (2017).

    Article  CAS  Google Scholar 

  40. F.C. Bing and R.W. Baker: The determination of hemoglobin in minute amounts of blood by Wu’s method. J. Biol. Chem. 92, 589 (1931).

    Article  CAS  Google Scholar 

  41. R.G. Knowles, M. Salter, S.L. Brooks, and S. Moncada: Anti-inflammatory glucocorticoids inhibit the induction by endotoxin of nitric oxide synthase in the lung, liver and aorta of the rat. Biochem. Biophys. Res. Commun. 172, 1042 (1990).

    Article  CAS  Google Scholar 

  42. S. Mohanty, Y. Wu, N. Chakraborty, P. Mohanty, and G. Ghosh: Impact of alginate concentration on the viability, cryostorage, and angiogenic activity of encapsulated fibroblasts. Mater. Sci. Eng., C 65, 269 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

All the procedures were approved by the Federal University of Rio Grande do Sul Institute of Basic Sciences Research Committee and Committee of Animal Welfare of the Federal University of Rio Grande do Sul (CEUA-UFRGS, protocol #33445). This work was partially financed by CNPq (Process #309002/2015-0 and 303853/2017-4). CAPES grant to E.C. Morais is also acknowledged. The authors are thankful to LNLS (Project D11A-SAXS1) for measurements in the SAXS beamline.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paulo Ivo Homem de Bittencourt Jr. or João Henrique Z. Dos Santos.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morais, E.C., Schroeder, H.T., Souza, C.S. et al. Comparative study on the influence of the content and functionalization of alginate matrices on K-562 cell viability and differentiation. Journal of Materials Research 35, 1249–1261 (2020). https://doi.org/10.1557/jmr.2020.96

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.96

Navigation