Skip to main content

Advertisement

Log in

Processing a biocompatible Ti–35Nb–7Zr–5Ta alloy by selective laser melting

  • Biomedical Materials, Regenerative Medicine and Drug Delivery
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The Ti–35Nb–7Zr–5Ta (TNZT) alloy is a promising alloy because of its biocompatibility, high specific strength, and low Young’s modulus. This work aimed at investigating the viability to process the TNZT alloy by selective laser melting (SLM) and at optimizing the processing parameters to obtain densified bulk samples. The single-track approach was first used, and the optimized laser parameters were determined to produce bulk samples with a relative density of 99.0% when an energy input of 58.3 J/mm3 was used. The effect of porosity on mechanical properties was studied, and the as-built SLM samples presented slightly lower compressive strength than samples produced by Cu-mould suction casting, as a result of a columnar grain structure in the SLMed samples. Prototypes were manufactured, proving the feasibility of manufacturing parts of the TNZT alloy with complex geometry by SLM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. D. Herzog, V. Seyda, E. Wycisk, and C. Emmelmann: Additive manufacturing of metals. Acta Mater. 117, 371 (2016).

    Article  CAS  Google Scholar 

  2. T. Debroy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang: Additive manufacturing of metallic components—Process, structure, and properties. Prog. Mater. Sci. 92, 112 (2018).

    Article  CAS  Google Scholar 

  3. S.A.M. Tofail, E.P. Koumoulos, A. Bandyopadhyay, S. Bose, L.O. Donoghue, and C. Charitidis: Additive manufacturing: Scientific and technological challenges, market uptake, and opportunities. Mater. Today 21, 22 (2018).

    Article  Google Scholar 

  4. S.L. Sing, J. An, W.Y. Yeong, and F.E. Wiria: Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials, and designs. J. Orthop. Res. 34, 369 (2016).

    Article  CAS  Google Scholar 

  5. M. Niinomi, M. Nakai, and J. Hieda: Development of new metallic alloys for biomedical applications. Acta Biomater. 8, 3888 (2012).

    Article  CAS  Google Scholar 

  6. M. Niinomi: Metals for Biomedical Devices, 1st ed. (CRC Press Woodhead Publishing Ltd., Cambridge, U.K., 2010); pp. 3–62.

    Book  Google Scholar 

  7. H.Y. Kim, Y. Ikehara, J.I. Kim, H. Hosoda, and S. Miyazaki: Martensitic transformation, shape memory effect and superelasticty of Ti–Nb binary alloys. Acta Mater. 54, 2419 (2006).

    Article  CAS  Google Scholar 

  8. L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, and J-P. Kruth: A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 58, 3303 (2010).

    Article  CAS  Google Scholar 

  9. A. Kreitcberg, V. Brailovski, and S. Prokoshkin: New biocompatible near-beta Ti–Zr–Nb alloy processed by laser powder bed fusion: Process optimization. J. Mater. Process. Technol. 252, 821 (2018).

    Article  CAS  Google Scholar 

  10. W. Chen, C. Chen, X. Zi, X. Cheng, X. Zhang, Y.C. Lin, and K. Zhou: Controlling the microstructure and mechanical properties of a metastable β titanium alloy by selective laser melting. Mater. Sci. Eng., A 726, 240 (2018).

    Article  CAS  Google Scholar 

  11. L.C. Zhang, D. Klemm, J. Eckert, Y.L. Hao, and T.B. Sercombe: Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy. Scr. Mater. 65, 21 (2011).

    Article  CAS  Google Scholar 

  12. I. Gibson, D. Rosen, and B. Stucker: Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing 2nd edition. Johnson Matthey Technol. Rev. 59, 193 (2015).

    Article  Google Scholar 

  13. T.A.G. Donato, L.H. de Almeida, R.A. Nogueira, T.C. Niemeyer, C.R. Grandini, R. Caram, S.G. Schneider, and A.R. Santos: Cytotoxicity study of some Ti alloys used as biomaterial. Mater. Sci. Eng., C 29, 1365 (2009).

    Article  CAS  Google Scholar 

  14. R. Banarjee, S. Nag, J. Stechschulte, and H.L. Fraser: Strengthening mechanisms in Ti–Nb–Zr–Ta and Ti–Mo–Zr–Fe orthopaedic alloys. Biomaterials 25, 3413 (2004).

    Article  Google Scholar 

  15. Z. Liu and G. Welsch: Literature survey on diffusivities of oxygen, aluminum, and vanadium in alpha titanium, beta titanium, and in rutile. Metall. Trans. A 19, 1121 (1988).

    Article  Google Scholar 

  16. V.R. Jablokov, N.G.D. Murray, H.J. Rack, and H.L. Freese: Influence of oxygen content on the mechanical properties of titanium–35niobium–7zirconium–5tantalum beta titanium alloy. J. ASTM Int. 2, 41 (2005).

    Google Scholar 

  17. Y.D. Zhang, D.P. Zhao, Y.J. Huang, M. Yan, J.H. Zhang, J.P. Luo, and J.F. Sun: Low-modulus biomedical Ti–30Nb–5Ta–3Zr additively manufactured by selective laser melting and its biocompatibility. Mater. Sci. Eng., C 97, 275 (2019).

    Article  Google Scholar 

  18. R. Boyer, G. Welsch, and E.W. Collings: Materials Properties Handbook: Titanium Alloys, 4th ed. (ASM International, Ohio, 1994); pp. 3–11.

    Google Scholar 

  19. C. Leyens and M. Peters: Titanium and Titanium Alloys. Fundamentals and Applications (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2003); pp. 4–12.

    Book  Google Scholar 

  20. J.H. Tan, W.L.E. Wong, and K.W. Dalgarno: An overview of powder granulometry on feedstock and part performance in the selective laser melting process. Addit. Manuf. 18, 228 (2017).

    Google Scholar 

  21. H.F. Fischmeister, A.D. Ozerskii, and L. Olsson: Solidification structure of gas atomized high-speed steel powders. Powder Metall. 25, 1 (1982).

    Article  CAS  Google Scholar 

  22. I. Yadroitsev, P. Bertrand, and I. Smurov: Parametric analysis of the selective laser melting process. Appl. Surf. Sci. 253, 8064 (2007).

    Article  CAS  Google Scholar 

  23. I. Yadroitsev, A. Gusarov, I. Yadroitsava, and I. Smurov: Single track formation in selective laser melting of metal powders. J. Mater. Process. Technol. 210, 1624 (2010).

    Article  CAS  Google Scholar 

  24. I. Yadroitsev and I. Smurov: Selective laser melting technology: From the single laser melted track stability to 3D parts of complex shape. Phys. Procedia 5, 551 (2010).

    Article  Google Scholar 

  25. W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, and S.S. Babu: The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 61, 315 (2016).

    Article  Google Scholar 

  26. C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, and S. L Sing: Review of selective laser melting: Materials and applications. Appl. Phys. Rev. 2, 1 (2015).

    Article  Google Scholar 

  27. D. Bourell, J. Pierre, M. Leu, G. Levy, D. Rosen, A.M. Beese, and A. Clare: Materials for additive manufacturing. CIRP Ann. - Manuf. Technol. 66, 659 (2017).

    Article  Google Scholar 

  28. B. Vrancken, L. Thijs, J-P. Kruth, and J. Van Humbeeck: Microstructure and mechanical properties of a novel β titanium metallic composite by selective laser melting. Acta Mater. 68, 150 (2014).

    Article  CAS  Google Scholar 

  29. S.L. Sing, F.E. Wiria, and W.Y. Yeong: Selective laser melting of titanium alloy with 50 wt% tantalum: Effect of laser process parameters on part quality. Int. J. Refract. Met. Hard Mater. 77, 120 (2018).

    Article  CAS  Google Scholar 

  30. R.L. Batalha, S. Pauly, U. Kühn, K. Kosiba, C. Bolfarini, C. Shyinti Kiminami, and P. Gargarella: Oligocrystalline microstructure in an additively manufactured biocompatible Ti–Nb–Zr–Ta alloy. Mater. Lett. 262, 127149 (2020).

    Article  CAS  Google Scholar 

  31. H. Schwab, K.G. Prashanth, L. Löber, U. Kühn, and J. Eckert: Selective laser melting of Ti–45Nb alloy. Metals 5, 686 (2015).

    Article  Google Scholar 

  32. W.E. Frazier: Metal additive manufacturing: A review. J. Mater. Eng. Perform. 23, 1917 (2014).

    Article  CAS  Google Scholar 

  33. Y. Zheng, X. Xu, Z. Xu, J. Wang, and H. Cai: Metallic Biomaterials: New Directions and Technologies, 1st ed. (Wiley-VCH Verlag GmbH & Co. KGaA, 2017); pp. 1–13.

  34. H.Y. Kim and S. Miyazaki: Several issues in the development of Ti–Nb-based shape memory alloys. Shape Memory Superelasticity 2, 380 (2016).

    Article  Google Scholar 

  35. J-P. Kruth, B. Vandenbroucke, I.J. Van Vaerenbergh, and I. Naert: Rapid Manufacturing of Dental Prostheses by Means of Selective Laser Sintering/Melting, Vol. S4 (Proceedings of the AFPR, Netherlands, 2005).

    Google Scholar 

  36. B. Vandenbroucke and J.P. Kruth: Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp. J. 13, 196 (2007).

    Article  Google Scholar 

  37. T. Gustmann, A. Neves, U. Kühn, P. Gargarella, C.S. Kiminami, C. Bolfarini, J. Eckert, and S. Pauly: Influence of processing parameters on the fabrication of a Cu–Al–Ni–Mn shape-memory alloy by selective laser melting. Addit. Manuf. 11, 23 (2016).

    CAS  Google Scholar 

  38. P. Karimi, T. Raza, J. Anderson, and L.E. Svensson: Influence of laser exposure time and point distance on 75-µm-thick layer of selective laser melted alloy 718. Int. J. Adv. Manuf. Technol. 94, 2199 (2018).

    Article  Google Scholar 

Download references

Acknowledgments

THe authors thank Dr. K. Kosiba, Dr. U. Kühn, Dr. H. Schwab, Dr. O. Ertugrul, Dr. O. Salman, and Dr. A. Funk for fruitful discussions and E. D’Almeida, B. Bartusch, C. Mix, H. Merker, and S. Donath for technical assistance. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil (CAPES)–Finance Code 001. This study was financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil (CAPES), and German Research Foundation (DFG) through the BRAGECRIM collaboration project (CAPES BEX 7185/13-8 and DFG PA 2275/4-1), and by São Paulo Research Foundation (FAPESP) under the Thematic Project No. 2013/05987-8 and Young Research Project No. 2017/27031-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo Lisboa Batalha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batalha, R.L., Batalha, W.C., Deng, L. et al. Processing a biocompatible Ti–35Nb–7Zr–5Ta alloy by selective laser melting. Journal of Materials Research 35, 1143–1153 (2020). https://doi.org/10.1557/jmr.2020.90

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.90

Navigation