Skip to main content
Log in

Effect of Al3+/Si4+ codoping on the structural, optoelectronic and UV sensing properties of ZnO

  • Electronic, Photonic and Magnetic Materials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The structural, vibrational, and optoelectronic properties of sol–gel synthesized Zn1−x(Al0.5Si0.5)xO nanoparticles were investigated. The X-ray diffraction studies of the samples confirmed the hexagonal wurtzite phase with the space group P63mc. No significant changes were observed in the lattice parameters. The increase in the intensity of \(E_{\rm{2}}^{{\rm{high}}}\) Raman mode observed at 438 cm−1 indicates a decrease in the crystallite size. The reduction in the deep-level emission band with the introduction of Al/Si indicates a decrease in intrinsic defects for the codoped sample. A unique electron paramagnetic resonance signal at g = 1.96 follows the same trend as the green luminescence, and its evolution was shown to probe the oxygen vacancy concentrations. IV characteristics curve confirm the increase in the conductivity for the codoped samples. To evaluate the role of surface defects, ultraviolet photoresponse behavior as a function of time was also studied, and an increase in the photocurrent was observed. The slow decay and rise in the photocurrent are because of multiple trapping by interstitial defects. A relatively faster response time was observed with the substitution of Al/Si. It has been observed that prepared nanomaterials are suitable for optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. E.J. McDermott, E.Z. Kurmaev, T.D. Boyko, L.D. Finkelstein, R.J. Green, K. Maeda, K. Domen, and A. Moewes: Structural and band gap investigation of GaN:ZnO heterojunction solid solution photocatalyst probed by soft X-ray spectroscopy. J. Phys. Chem. C 116, 7694 (2012).

    Article  CAS  Google Scholar 

  2. C-L. Hsu, Y-C. Wang, S-P. Chang, and S-J. Chang: Ultraviolet/visible photodetectors based on p–n NiO/ZnO nanowires decorated with Pd nanoparticles. ACS Appl. Nano Mater. 2, 6343 (2019).

    Article  CAS  Google Scholar 

  3. S. Cao, J. Zheng, J. Zhao, Z. Yang, C. Li, X. Guan, W. Yang, M. Shang, and T. Wu: Enhancing the performance of quantum dot light-emitting diodes using room-temperature-processed Ga-doped ZnO nanoparticles as the electron transport layer. ACS Appl. Mater. Interfaces 9, 15605 (2017).

    Article  CAS  Google Scholar 

  4. A.S. Dahiya, C. Opoku, G. Poulin-Vittrant, N. Camara, C. Daumont, E.G. Barbagiovanni, G. Franzò, S. Mirabella, and D. Alquier: Flexible organic/inorganic hybrid field-effect transistors with high performance and operational stability. ACS Appl. Mater. Interfaces 9, 573 (2017).

    Article  CAS  Google Scholar 

  5. L. Zhu, Y. Zhang, P. Lin, Y. Wang, L. Yang, L. Chen, L. Wang, B. Chen, and Z.L. Wang: Piezotronic effect on rashba spin–orbit coupling in a ZnO/P3HT nanowire array structure. ACS Nano 12, 1811 (2018).

    Article  CAS  Google Scholar 

  6. J. Dai, Z. Suo, Z. Li, and S. Gao: Effect of Cu/Al doping on electronic structure and optical properties of ZnO. Results Phys. 15, 102649 (2019).

    Article  Google Scholar 

  7. S. Hullavarad, N. Hullavarad, D. Look, and B. Claflin: Persistent photoconductivity studies in nanostructured ZnO UV sensors. Nanoscale Res. Lett. 4, 1421 (2009).

    Article  CAS  Google Scholar 

  8. A.J. Gimenez, J. Yanez-Limon, and J.M. Seminario: ZnO–paper based photoconductive UV sensor. J. Phys. Chem. C 115, 282 (2010).

    Article  Google Scholar 

  9. K. Liu, M. Sakurai, and M. Aono: ZnO-based ultraviolet photodetectors. Sensors 10, 8604 (2010).

    Article  CAS  Google Scholar 

  10. M. Arif, M. Shkir, S. AlFaify, V. Ganesh, A. Sanger, H. Algarni, P.M. Vilarinho, and A. Singh: A structural, morphological, linear, and nonlinear optical spectroscopic studies of nanostructured Al-doped ZnO thin films: An effect of Al concentrations. J. Mater. Res. 34, 1309 (2019).

    Article  CAS  Google Scholar 

  11. S.D. Ponja, S. Sathasivam, I.P. Parkin, and C.J. Carmalt: Highly conductive and transparent gallium doped zinc oxide thin films via chemical vapor deposition. Sci. Rep. 10, 638 (2020).

    Article  CAS  Google Scholar 

  12. M. Caglar, Y. Caglar, and S. Ilican: Electrical and optical properties of undoped and In-doped ZnO thin films. Phys. Status Solidi C 4, 1337 (2007).

    Article  CAS  Google Scholar 

  13. G. El Hallani, S. Nasih, N. Fazouan, A. Liba, M. Khuili, M. Sajieddine, M. Mabrouki, L. Laanab, and E. Atmani: Comparative study for highly Al and Mg doped ZnO thin films elaborated by sol gel method for photovoltaic application. J. Appl. Phys. 121, 135103 (2017).

    Article  Google Scholar 

  14. J. Nomoto, H. Makino, T. Nakajima, T. Tsuchiya, and T. Yamamoto: Improvement of the properties of direct-current magnetron-sputtered Al-doped ZnO polycrystalline films containing retained Ar atoms using 10-nm-thick buffer layers. ACS omega 4, 14526–14536 (2019).

    Article  CAS  Google Scholar 

  15. Y-T. Cao, Y. Cai, C-B. Yao, S-B. Bao, and Y. Han: The photoluminescence, field emission and femtosecond nonlinear absorption properties of Al-doped ZnO nanowires, nanobelts, and nanoplane-cone morphologies. RSC Adv. 9, 34547 (2019).

    Article  CAS  Google Scholar 

  16. Y. Liu, H. Zhang, X. An, C. Gao, Z. Zhang, J. Zhou, M. Zhou, and E. Xie: Effect of Al doping on the visible photoluminescence of ZnO nanofibers. J. Alloys Compd. 506, 772 (2010).

    Article  CAS  Google Scholar 

  17. T. Srivastava, S. Kumar, P. Shirage, and S. Sen: Reduction of O2– related defect states related to increased bandgap in Si4+ substituted ZnO. Scr. Mater. 124, 11 (2016).

    Article  CAS  Google Scholar 

  18. B.E. Warren: X-ray Diffraction. Dover publications, INC., New York (1990).

    Google Scholar 

  19. V. Russo, M. Ghidelli, P. Gondoni, C.S. Casari, and A. Li Bassi: Multi-wavelength Raman scattering of nanostructured Al-doped zinc oxide. J. Appl. Phys. 115, 073508 (2014).

    Article  Google Scholar 

  20. T.C. Damen, S. Porto, and B. Tell: Raman effect in zinc oxide. Phys. Rev. 142, 570 (1966).

    Article  CAS  Google Scholar 

  21. J. Luo, X. Zhu, G. Chen, F. Zeng, and F. Pan: The electrical, optical, and magnetic properties of Si-doped ZnO films. Appl. Surf. Sci. 258, 2177 (2012).

    Article  CAS  Google Scholar 

  22. R.K. Biroju and P. Giri: Strong visible and near infrared photoluminescence from ZnO nanorods/nanowires grown on single layer graphene studied using sub-band gap excitation. J. Appl. Phys. 122, 044302 (2017).

    Article  Google Scholar 

  23. S. Dhara and P. Giri: Enhanced UV photosensitivity from rapid thermal annealed vertically aligned ZnO nanowires. Nanoscale Res. Lett. 6, 504 (2011).

    Article  Google Scholar 

  24. G. Xiong, U. Pal, and J.G. Serrano: Correlations among size, defects, and photoluminescence in ZnO nanoparticles. J. Appl. Phys. 101, 024317 (2007).

    Article  Google Scholar 

  25. J. Lv and X. Li: Defect evolution in ZnO and its effect on radiation tolerance. Phys. Chem. Chem. Phys. 20, 11882 (2018).

    Article  CAS  Google Scholar 

  26. D. Thomas, K.K. Sadasivuni, S. Waseem, B. Kumar, and J-J. Cabibihan: Synthesis, green emission and photosensitivity of Al-doped ZnO film. Microsyst. Technol. 24, 3069 (2018).

    Article  CAS  Google Scholar 

  27. H. Kaftelen, K. Ocakoglu, R. Thomann, S. Tu, S. Weber, and E. Erdem: EPR and photoluminescence spectroscopy studies on the defect structure of ZnO nanocrystals. Phys. Rev. B 86, 014113 (2012).

    Article  Google Scholar 

  28. J. Lv, C. Li, and J. BelBruno: Characteristics of point defects on the optical properties of ZnO: Revealed by Al–H co-doping and post-annealing. RSC Adv. 3, 8652 (2013).

    Article  CAS  Google Scholar 

  29. C. Drouilly, J-M. Krafft, F. Averseng, S. Casale, D. Bazer-Bachi, C. Chizallet, V. Lecocq, H. Vezin, H. Lauron-Pernot, and G. Costentin: ZnO oxygen vacancies formation and filling followed by in situ photoluminescence and in situ EPR. J. Phys. Chem. C 116, 21297 (2012).

    Article  CAS  Google Scholar 

  30. R. Gurwitz, R. Cohen, and I. Shalish: Interaction of light with the ZnO surface: Photon induced oxygen “breathing,” oxygen vacancies, persistent photoconductivity, and persistent photovoltage. J. Appl. Phys. 115, 033701 (2014).

    Article  Google Scholar 

  31. A. Bera and D. Basak: Role of defects in the anomalous photoconductivity in ZnO nanowires. Appl. Phys. Lett. 94, 163119 (2009).

    Article  Google Scholar 

  32. E. Barbagiovanni, V. Strano, G. Franzò, I. Crupi, and S. Mirabella: Photoluminescence transient study of surface defects in ZnO nanorods grown by chemical bath deposition. Appl. Phys. Lett. 106, 093108 (2015).

    Article  Google Scholar 

  33. F. Kayaci, S. Vempati, I. Donmez, N. Biyikli, and T. Uyar: Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: A bottom-up approach to control defect density. Nanoscale 6, 10224 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Saniya Ayaz gratefully acknowledges the financial support received from UGC, New Delhi, under the Maulana Azad National fellowship (No. F1-17.1/2015-16/MANF-2015-17-MAD-49190), and Dr. Vipul Singh is acknowledged for photoluminescence measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somaditya Sen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayaz, S., Sharma, N., Dash, A. et al. Effect of Al3+/Si4+ codoping on the structural, optoelectronic and UV sensing properties of ZnO. Journal of Materials Research 35, 1337–1345 (2020). https://doi.org/10.1557/jmr.2020.83

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.83

Navigation