Skip to main content
Log in

Improved ultraviolet sensing, photo-stabilized visible transmission, and electrical conductance in Zn1xGax/2Fex/2O

  • Electronic, Photonic and Magnetic Materials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Zn1−xGax/2Fex/2O (x = 0, 0.0156, 0.0312) represents the polycrystalline hexagonal (wurtzite) phase with a space group P63mc synthesized using the sol–gel technique. A comparative study and investigation of structural, optical, and photo-sensing properties of these samples were performed. Structural and vibrational studies show enhancement in the crystallinity of the codoped samples. Optical band gap increases from ∼3.21 to 3.24 eV with substitution because of the improved crystallinity. The photoluminescence properties show modification from yellowish green for x = 0 to a more distinct green for x = 0.0156. The intensity of the luminescence decreases with doping, indicating an overall reduction of defects in the band gap helping the material to become more transparent to visible light. Photocurrent and photosensitivity are modified with the illumination wavelength (290, 450, 540 and 640 nm) with codoping. Sensitivity toward visible lights reduced with codoping. On the other hand, it is more sensitive to ultraviolet light. It indicates the material becomes more transparent for visible light and may be used as photostable device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. S.K. Akay, S. Sarsıcı, and H.K. Kaplan: Determination of electrical parameters of ZnO/Si heterojunction device fabricated by RF magnetron sputtering. Opt. Quant. Electron. 50, 362 (2018).

    Article  Google Scholar 

  2. D.C. Agarwal, U.B. Singh, S. Gupta, R. Singhal, P.K. Kulriya, F. Singh, A. Tripathi, J. Singh, U.S. Joshi, and D.K. Avasthi: Enhanced room temperature ferromagnetism and green photoluminescence in Cu doped ZnO thin film synthesised by neutral beam sputtering. Sci. Rep. 9, 1 (2019).

    Google Scholar 

  3. G.M. Ali and P. Chakrabarti: Performance of ZnO-based ultraviolet photodetectors under varying thermal treatment. IEEE Photonics J. 2, 784 (2010).

    Article  Google Scholar 

  4. S. Alagha, S. Heedt, D. Vakulov, F. Mohammadbeigi, E.S. Kumar, T. Schäpers, D. Isheim, S.P. Watkins, and K.L. Kavanagh: Electrical properties of lightly Ga-doped ZnO nanowires. Semicond. Sci. Technol. 32, 125010 (2017).

    Article  Google Scholar 

  5. J. Singh, S. Ranwa, J. Akhtar, and M. Kumar: Growth of residual stress-free ZnO films on SiO2/Si substrate at room temperature for MEMS devices. AIP Adv. 5, 067140 (2015).

    Article  Google Scholar 

  6. S-W. Fan, A.K. Srivastava, and V.P. Dravid: UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Appl. Phys. Lett. 95, 142106 (2009).

    Article  Google Scholar 

  7. S. Hullavarad, N. Hullavarad, D. Look, and B. Claflin: Persistent photoconductivity studies in nanostructured ZnO UV sensors. Nanoscale Res. Lett. 4, 1421 (2009).

    Article  CAS  Google Scholar 

  8. C-Y. Chen, L-H. Hsiao, and J-I. Chyi: Influence of point defects on the properties of undoped and Ga-doped ZnO films grown by plasma-assisted molecular beam epitaxy in an O-rich environment. ECS J. Solid State Sci. Technol. 5, Q222 (2016).

    Article  CAS  Google Scholar 

  9. E.G. Barbagiovanni, V. Strano, G. Franzò, I. Crupi, and S. Mirabella: Photoluminescence transient study of surface defects in ZnO nanorods grown by chemical bath deposition. Appl. Phys. Lett. 106, 093108 (2015).

    Article  Google Scholar 

  10. S. Ayaz, P. Mishra, and S. Sen: Structure correlated optoelectronic and electrochemical properties of Al/Li modified ZnO. J. Appl. Phys. 126, 024302 (2019).

    Article  Google Scholar 

  11. K. Harun, F. Hussain, A. Purwanto, B. Sahraoui, A. Zawadzka, and A.A. Mohamad: Sol–gel synthesized ZnO for optoelectronics applications: A characterization review. Mater. Res. Express 4, 122001 (2017).

    Article  Google Scholar 

  12. C. Lin, S-J. Chang, W-S. Chen, and T-J. Hsueh: Transparent ZnO-nanowire-based device for UV light detection and ethanol gas sensing on c-Si solar cell. RSC Adv. 6, 11146 (2016).

    Article  CAS  Google Scholar 

  13. L. Schmidt-Mende and J.L. MacManus-Driscoll: ZnO nanostructures, defects, and devices. Mater. Today 10, 40 (2007).

    Article  CAS  Google Scholar 

  14. T. Srivastava, G. Bajpai, G. Rathore, S.W. Liu, S. Biring, and S. Sen: Vanadium substitution: A simple and economic way to improve UV sensing in ZnO. J. Appl. Phys. 123, 161407 (2018).

    Article  Google Scholar 

  15. A.J. Gimenez, J.M. Yáñez-Limón, and J.M. Seminario: ZnO paper based photoconductive UV sensor. J. Phys. Chem. C 115, 282 (2011).

    Article  CAS  Google Scholar 

  16. G. Bajpai, T. Srivastava, N. Patra, I. Moirangthem, S.N. Jha, D. Bhattacharyya, S. Riyajuddin, K. Ghosh, D.R. Basaula, M. Khan, S-W. Liu, S. Biring, and S. Sen: Effect of ionic size compensation by Ag+ incorporation in homogeneous Fe-substituted ZnO: Studies on structural, mechanical, optical, and magnetic properties. RSC Adv. 8, 24355 (2018).

    Article  CAS  Google Scholar 

  17. S. Pat, R. Mohammadigharehbagh, C. Musaoglu, S. Özen, and Ş. Korkmaz: Investigation of the surface, morphological and optical properties of boron-doped ZnO thin films deposited by thermionic vacuum arc technique. Mater. Res. Express 5, 066419 (2018).

    Article  Google Scholar 

  18. J. Das, D.K. Mishra, V.V. Srinivasu, D.R. Sahu, and B.K. Roul: Photoluminescence and Raman studies for the confirmation of oxygen vacancies to induce ferromagnetism in Fe doped Mn:ZnO compound. J. Magn. Magn. Mater. 382, 111 (2015).

    Article  CAS  Google Scholar 

  19. H. Fukushima, H. Uchida, H. Funakubo, T. Katoda, and K. Nishida: Evaluation of oxygen vacancies in ZnO single crystals and powders by micro-Raman spectroscopy. J. Ceram. Soc. Jpn. 125, 445 (2017).

    Article  CAS  Google Scholar 

  20. R. Kirste, Y. Aksu, M.R. Wagner, S. Khachadorian, S. Jana, M. Driess, C. Thomsen, and A. Hoffmann: Raman and photoluminescence spectroscopic detection of surface-bound Li+O2 defect sites in Li-doped ZnO nanocrystals derived from molecular precursors. Chemphyschem 12, 1189 (2011).

    Article  CAS  Google Scholar 

  21. V.I. Korepanov, S-Y. Chan, H-C. Hsu, and H. Hamaguchi: Phonon confinement and size effect in Raman spectra of ZnO nanoparticles. Heliyon 5, e01222 (2019).

    Article  Google Scholar 

  22. T. Srivastava, E.G. Rini, A. Joshi, P. Shirage, and S. Sen: Zn1−xSixO: Improved optical transmission and electrical conductivity. Ceram. Int. 43, 5668–5673, (2017).

    Article  CAS  Google Scholar 

  23. R.C. Rai: Analysis of the Urbach tails in absorption spectra of undoped ZnO thin films. J. Appl. Phys. 113, 153508 (2013).

    Article  Google Scholar 

  24. D. Dimova-Malinovska, H. Nichev, and O. Angelov: Correlation between the stress in ZnO thin films and the Urbach band tail width. Phys. Status Solidi C 5, 3353 (2008).

    Article  CAS  Google Scholar 

  25. E.G. Barbagiovanni, R. Reitano, G. Franzò, V. Strano, A. Terrasi, and S. Mirabella: Radiative mechanism and surface modification of four visible deep level defect states in ZnO nanorods. Nanoscale 8, 995 (2015).

    Article  Google Scholar 

  26. H. Chen, J. Ding, W. Guo, G. Chen, and S. Ma: Blue-green emission mechanism and spectral shift of Al-doped ZnO films related to defect levels. RSC Adv. 3, 12327 (2013).

    Article  CAS  Google Scholar 

  27. C.S. Granerød, S.R. Bilden, T. Aarholt, Y-F. Yao, C.C. Yang, D.C. Look, L. Vines, K.M. Johansen, and Ø. Prytz: Direct observation of conduction band plasmons and the related burstein-moss shift in highly doped semiconductors: A STEM-EELS study of Ga-doped ZnO. Phys. Rev. B 98, 115301 (2018).

    Article  Google Scholar 

Download references

Acknowledgment

One of the authors (PKM) would like to thank the Department of Science and Technology (DST), New Delhi, for providing Inspire Fellowship (IF170002). The authors are very thankful to Dr. Vipul Singh for providing PL spectroscopy. For Raman measurement, authors acknowledge the DST-FIST project (SR/FTP/PSI225/2016) of Discipline of Physics, IIT Indore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somaditya Sen.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, P.K., Dash, A. & Sen, S. Improved ultraviolet sensing, photo-stabilized visible transmission, and electrical conductance in Zn1xGax/2Fex/2O. Journal of Materials Research 35, 1329–1336 (2020). https://doi.org/10.1557/jmr.2020.82

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.82

Navigation