Skip to main content

Advertisement

Log in

Study on cytotoxicity of polyethylene glycol and albumin bovine serum molecule–modified quantum dots prepared by hydrothermal method

  • Biomedical Materials, Regenerative Medicine and Drug Delivery
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Fluorescent quantum dots (QDs) modified with polyethylene glycol (PEG) and albumin bovine serum (BSA) have profound application in the detection and treatment of hepatocellular carcinoma (HCC) cells. In the present study, the effects and mechanism of PEG and BSA modification on the cytotoxicity of QDs have been explored. It was found that the diameter of the as-prepared QDs, PEG@QDs, BSA@QDs is 3–5 nm, 4–5 nm, and 4–6 nm, respectively. With increase of the treatment time from 0 to 24 h, the HCC cell viability treated with QDs, PEG@QDs, and BSA@QDs obviously decreases, showing a certain time-dependent manner. When the concentration of several nanomaterials is increased from 10 to 90 nM, the cell viability decreases accordingly, exhibiting a certain concentration-dependent manner. Under the same concentration change conditions, the reactive oxygen species contents of cells treated by QDs, PEG@QDs, and BSA@QDs also rise from 7.9 × 103, 6.7 × 103, and 4.7 × 103 to 13.2 × 103, 14.3 × 103, and 12.3 × 103, respectively. In these processes, superoxide dismutase does not play a major role. This study provides strong foundation and useful guidance for QD applications in the diagnosis and treatment of HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. R.L. Siegel, K.D. Miller, and A. Jemal: Cancer statistics, 2020. Ca-Cancer J. Clin. 70, 7–30 (2020).

    Article  Google Scholar 

  2. F.X. Bosch, J. Ribes, M. Diaz, and R. Cleries: Primary liver cancer: Worldwide incidence and trends. Gastroenterology 127, S5–S16 (2004).

    Article  Google Scholar 

  3. Survival Rates for Liver Cancer, American Cancer Society: Available at: https://www.cancer.org/cancer/liver-cancer/detection-diagnosis-staging/survival-rates.html (accessed March 2, 2020).

  4. M. Ferrari: Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer 5, 161–171 (2005).

    Article  CAS  Google Scholar 

  5. N. Bertrand, J. Wu, X.Y. Xu, N. Kamaly, and O.C. Farokhzad: Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Delivery Rev. 66, 2–25 (2014).

    Article  CAS  Google Scholar 

  6. P. Juzenas, W. Chem, Y.P. Sun, M.A.N. Coelho, R. Generalov, N. Generalova, and I.L. Christensen: Intracellular delivery: Fundamentals and applications. Adv. Drug Delivery Rev. 60, 1600–1614 (2008).

    Article  CAS  Google Scholar 

  7. V. Biju, S. Mundayoor, R.V. Omkumar, A. Anas, and M. Ishikawa: Bioconjugated quantum dots for cancer research: Present status, prospects and remaining issues. Biotechnol. Adv. 28, 199 (2010).

    Article  CAS  Google Scholar 

  8. K.T. Yong, Y.C. Wang, I. Roy, H. Rui, M.T. Swihart, W.C. Law, S.K. Kwak, L. Ye, J.W. Liu, S.D. Mahajan, and J.L. Reynolds: Preparation of quantum dot/drug nanoparticle formulations for traceable targeted delivery and therapy. Theranostics 2, 681–694 (2012).

    Article  CAS  Google Scholar 

  9. V. Biju, T. Itoh, A. Anas, A. Sujith, and M. Ishikaw: Semiconductor quantum dots and metal nanoparticles: Syntheses, optical properties, and biological applications. Anal. Bioanal. Chem. 391, 2469–2495 (2008).

    Article  CAS  Google Scholar 

  10. X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, and S. Weiss: Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

    Article  CAS  Google Scholar 

  11. D. Zhao, Z.K. He, W.H. Chan, and M.M.F. Choi: Synthesis and characterization of high-quality water-soluble near-infrared-emitting CdTe/CdS quantum dots capped by N-acetyl-L-cysteine via hydrothermal method. J. Phys. Chem. C 113, 1293–1300 (2009).

    Article  CAS  Google Scholar 

  12. H. Zhang, L.P. Wang, H.M. Xiong, L.H. Hu, B. Yang, and W. Li: Hydrothermal synthesis for high-quality CdTe nanocrystals. Adv. Mater. 15, 1712–1715 (2003).

    Article  CAS  Google Scholar 

  13. H. Meng, J.Y. Chen, L. Mi, P.N. Wang, M.Y. Ge, Y. Yue, and N. Dai: Conjugates of folic acids with BSA-coated quantum dots for cancer cell targeting and imaging by single-photon and two-photon excitation. J. Biol. Inorg Chem. 16, 117–123 (2011).

    Article  CAS  Google Scholar 

  14. K. Li, C. Xia, B. Wang, H. Chen, T. Wang, Q. He, L. Cao, and Y. Wang: Effects of quantum dots on the ROS amount of liver cancer stem cells. Colloids Surf., B 155, 193–199 (2017).

    Article  CAS  Google Scholar 

  15. Y. Upadhyay, S. Bothra, R. Kumar, S.K. Ashok Kumar, and S.K. Sahoo: Mimicking biological process to detect alkaline phosphatase activity using the vitamin B6 cofactor conjugated bovine serum albumin capped CdS quantum dots. Colloids Surf., B 185, 110624 (2020).

    Article  CAS  Google Scholar 

  16. J. Liu, C. Li, T. Brans, A. Harizaj, S.V. Steene, T.D. Beer, S.D. Smedt, S. Szunerits, R. Boukherroub, R. Xiong, and K. Braeckmans: Surface functionalization with polyethylene glycol and polyethyleneimine improves the performance of graphene-based materials for safe and efficient intracellular delivery by laser-induced photoporation. Int. J. Mol. Sci. 21, 1540 (2020).

    Article  CAS  Google Scholar 

  17. L. Liu, H. Jiang, J. Dong, W. Zhang, G. Dang, M. Yang, Y. Li, H. Chen, H. Ji, and L. Dong: PEGylated MoS2 quantum dots for traceable and pH-responsive chemotherapeutic drug delivery. Colloids Surf., B 185, 110590 (2020).

    Article  CAS  Google Scholar 

  18. N.R. Ko, S.Y. Van, S.H. Hong, S. Kim, M. Kim, J.S. Lee, S.J. Lee, Y. Lee, I.K. Kwon, and S.J. Oh: Dual pH- and GSH-responsive degradable PEGylated graphene quantum dot-based nanoparticles for enhanced HER2-positive breast cancer therapy. Nanomaterials 10, 91 (2020).

    Article  CAS  Google Scholar 

  19. H. Wiseman and B. Halliwell: Damage to DNA by reactive oxygen and nitrogen species: Role in inflammatory disease and progression to cancer. Biochem. J. 313, 17–29 (1996).

    Article  CAS  Google Scholar 

  20. P.T. Schumacker: Reactive oxygen species in cancer cells: Live by the sword, die by the sword. Cancer Cell 10, 175–176 (2006).

    Article  CAS  Google Scholar 

  21. D.T. Loo and J.R. Rillerna: Measurement of cell death. Methods Cell Biol. 57, 251–264 (1998).

    Article  CAS  Google Scholar 

  22. V.J. Thannickal and B.L. Fanburg: Reactive oxygen species in cell signaling. Am J Physiol-Lung C 279, L1005–L1028 (2000).

    Article  CAS  Google Scholar 

  23. H. Sauer, M. Watenberg, and J. Hescheler: Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell. Physiol. Biochem. 11, 173–186 (2001).

    Article  CAS  Google Scholar 

  24. K. Hensley, K.A. Robinson, S.P. Gabbita, S. Salsman, and R.A. Floyd: Reactive oxygen species, cell signaling, and cell injury. Free Radicals Biol. Med. 28, 1456–1462 (2000).

    Article  CAS  Google Scholar 

  25. K.G. Li, J.T. Chen, S.S. Bai, X. Wen, S.Y. Song, Q. Yu, J. Li, and Y.Q. Wang: Intracellular oxidative stress and cadmium ions release induce cytotoxicity of unmodified cadmium sulfide quantum dots. Toxicol. Vitro 23, 1007–1013 (2009).

    Article  CAS  Google Scholar 

  26. J. Wang, X. Zheng, and H. Zhang: Exploring the conformational changes in fibrinogen by forming protein corona with CdTe quantum dots and the related cytotoxicity. Spectrochim. Acta 220, 117143 (2019).

    Article  CAS  Google Scholar 

  27. N.M. Monaheng, S. Parani, M. Gulumian, and O.S. Oluwafemi: Eco-friendly synthesis of glutathione-capped CdTe/CdSe/ZnSe core/double shell quantum dots: Its cytotoxicity and genotoxicity effects on Chinese hamster ovary cells. Toxicol. Res. 8, 868–874 (2019).

    Article  CAS  Google Scholar 

  28. M. Valko, C.J. Rhodes, J. Moncol, M. Izakovic, and M. Mazur: Free radicals, metals, and antioxidants in oxidative stress-induced cancer. Chem.-Biol. Interact. 160, 1–40 (2006).

    Article  CAS  Google Scholar 

  29. O. Blokhina, E. Virolainen, and K.V. Fagerstedt: Antioxidants, oxidative damage and oxygen deprivation stress: A review. Ann. Bot. 91, 179–194 (2003).

    Article  CAS  Google Scholar 

  30. M. Inoue, E.F. Sato, M. Nishikawa, A.M. Park, Y. Kira, I. Imada, and K. Utsumi: Cross talk of nitric oxide, oxygen radicals, and superoxide dismutase regulates the energy metabolism and cell death and determines the fates of aerobic life. Antioxid. Redox Signaling 5, 475–484 (2003).

    Article  CAS  Google Scholar 

  31. G.R. Buttner, C.F. Ng, M. Wang, V.G.J. Rodgers, and F.Q. Schafer: A new paradigm: Manganese superoxide dismutase influences the production of H2O2 in cells and thereby their biological state. Free Radicals Biol. Med. 41, 1338–1350 (2006).

    Article  Google Scholar 

  32. B. Chang, X. Yang, F. Wang, Y. Wang, R. Yang, N. Zhang, and B. Wang: Water soluble fluorescence quantum dot probe labeling liver cancer cells. J. Mater. Sci.: Mater. Med. 24, 2505–2508 (2013).

    CAS  Google Scholar 

  33. B. Wang, H. Chen, R. Yang, F. Wang, P. Zhou, and N. Zhang: Highly fluorescent QD probes labeling hepatocellular carcinoma cells. RSC Adv. 5, 1841 (2015).

    Article  CAS  Google Scholar 

  34. N.V. Gopee, D.W. Roberts, P. Webb, C.R. Cozart, P.H. Siitonen, A.R. Warbritton, W.W. Yu, V.L. Colvin, N.J. Walker, and P.C. Howard: Migration of intradermally injected quantum dots to sentinel organs in mice. Toxicol. Sci. 98, 249–257 (2007).

    Article  CAS  Google Scholar 

  35. M.Y. Li, Y.X. Ge, Q.F. Chen, S.K. Xu, N.Z. Wang, and X.J. Zhang: Hydrothermal synthesis of highly luminescent CdTe quantum dots by adjusting precursors’ concentration and their conjunction with BSA as biological fluorescent probes. Talanta 72, 89–94 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Open Project of the Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University (NMUAMT201808) and the Natural Sciences Foundation of Tianjin City of China (No. 12JCYBJC19100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hailong Cao or Baiqi Wang.

Additional information

1

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, E., Liu, L., Li, C. et al. Study on cytotoxicity of polyethylene glycol and albumin bovine serum molecule–modified quantum dots prepared by hydrothermal method. Journal of Materials Research 35, 1135–1142 (2020). https://doi.org/10.1557/jmr.2020.78

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.78

Navigation