Skip to main content

Advertisement

Log in

Printing composite nanofilaments for use in a simple and low-cost 3D pen

  • Organic and Hybrid Functional Materials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, filament based on ɛ-polycaprolactone (PCL) and containing the bioactive ceramics nanohydroxyapatite (nHap) and Laponite® (Lap) was prepared by the extrusion process. To obtain the material, a mass ratio of 89:10:1 (PCL:nHap:Lap) was used, and structural and morphological characterization was realized. In addition, cytotoxicity (using Allium cepa bulbs) and viability tests on L929 cells also were performed. The results showed that filament (diameter of 1.79 ± 0.17 mm) presented a good dispersion of nHap and Lap into polymeric matrices. Fourier transform infrared spectroscopy identified typical bands at 1720, 1091, and 1045 cm−1 addressed to PCL and nHAp, In addition, Lap was identified through dispersive energy system and X-ray diffraction analyses. All filaments did not exhibit cytotoxic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. M. Maroulakos, G. Kamperos, L. Tayebi, D. Halazonetis, and Y. Ren: Applications of 3D printing on craniofacial bone repair: A systematic review. J. Dent 80, 1 (2019).

    Article  Google Scholar 

  2. A.A. Zadpoor: Mechanical performance of additively manufactured meta-biomaterials. Acta Biomater. 85, 41 (2019).

    Article  CAS  Google Scholar 

  3. R. Hedayati, S.M. Ahmadi, K. Lietaert, B. Pouran, Y. Li, H. Weinans, C.D. Rans, and A.A. Zadpoor: Isolated and modulated effects of topology and material type on the mechanical properties of additively manufactured porous biomaterials. J. Mech. Behav. Biomed. Mater. 79, 254 (2018).

    Article  CAS  Google Scholar 

  4. B.I. Oladapo, S.A. Zahedi, and A.O.M. Adeoye: 3D printing of bone scaffolds with hybrid biomaterials. Composites, Part B 158, 428 (2019).

    Article  CAS  Google Scholar 

  5. W. Wang, B. Huang, J.J. Byun, and P. Bártolo: Assessment of PCL/carbon material scaffolds for bone regeneration. J. Mech. Behav. Biomed. Mater. 93, 52 (2019).

    Article  CAS  Google Scholar 

  6. Y. Du, H. Liu, J. Shuang, J. Wang, J. Ma, and S. Zhang: Microsphere-based selective laser sintering for building macroporous bone scaffolds with controlled microstructure and excellent biocompatibility. Colloids Surf., B 135, 81 (2015).

    Article  CAS  Google Scholar 

  7. Z. Ortega, M.E. Alemán, A.N. Benítez, and M.D. Monzón: Theoretical-experimental evaluation of different biomaterials for parts obtaining by fused deposition modeling. Measurement 89, 137 (2016).

    Article  Google Scholar 

  8. K. Friedrich: Polymer composites for tribological applications. Adv. Ind. Eng. Polym. Res. 1, 3 (2018).

    Google Scholar 

  9. B. Derby: Printing and prototyping of tissues and scaffolds. Science 338, 921 (2012).

    Article  CAS  Google Scholar 

  10. L.R. Jaidev and K. Chatterjee: Surface functionalization of 3D printed polymer scaffolds to augment stem cell response. Mater. Des. 161, 44 (2019).

    Article  CAS  Google Scholar 

  11. B. Yuan, S. Zhou, and X. Chen: Rapid prototyping technology and its application in bone tissue engineering. J. Zhejiang Univ., Sci., B 18, 303 (2017).

    Article  CAS  Google Scholar 

  12. L. Yuan, S. Ding, and C. Wen: Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review. Bioact. Mater. 4, 56 (2019).

    Article  Google Scholar 

  13. E. Malikmammadov, T.E. Tanir, A. Kiziltay, and V. Hasirci: PCL and PCL-based materials in biomedical applications. J. Biomater. Sci. Polym. Ed. 5063, 1 (2018).

    Google Scholar 

  14. Y.S. Cho, S. Choi, S.H. Lee, K.K. Kim, and Y.S. Cho: Assessments of polycaprolactone/hydroxyapatite composite scaffold with enhanced biomimetic mineralization by exposure to hydroxyapatite via a 3D-printing system and alkaline erosion. Eur. Polym. J. 113, 340 (2019).

    Article  CAS  Google Scholar 

  15. H. Shao, J. He, T. Lin, Z. Zhang, Y. Zhang, and S. Liu: 3D gel-printing of hydroxyapatite scaffold for bone tissue engineering. Ceram. Int. 45, 1163 (2019).

    Article  CAS  Google Scholar 

  16. Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, and Y. He: 3D printing of ceramics: A review. J. Eur. Ceram. Soc. 39, 661 (2019).

    Article  CAS  Google Scholar 

  17. L.C. Hwa, S. Rajoo, A.M. Noor, N. Ahmad, and M.B. Uday: Recent advances in 3D printing of porous ceramics: A review. Curr. Opin. Solid State Mater. Sci. 21, 323 (2017).

    Article  CAS  Google Scholar 

  18. P. Chen, L. Liu, J. Pan, J. Mei, C. Li, and Y. Zheng: Biomimetic composite scaffold of hydroxyapatite/gelatin-chitosan core–shell nanofibers for bone tissue engineering. Mater. Sci. Eng. C 97, 325 (2019).

    Article  CAS  Google Scholar 

  19. M. Nabavinia, A. Baradar, and H. Naderi-meshkin: Nano-hydroxyapatite-alginate-gelatin microcapsule as a potential osteogenic building block for modular bone tissue engineering. Mater. Sci. Eng. C 97, 67 (2019).

    Article  CAS  Google Scholar 

  20. J.I. González Ocampo, M.M. Machado de Paula, N.J. Bassous, A.O. Lobo, C.P. Ossa Orozco, and T.J. Webster: Osteoblast responses to injectable bone substitutes of kappa-carrageenan and nano hydroxyapatite. Acta Biomater. 83, 425 (2019).

    Article  CAS  Google Scholar 

  21. M.V.B. dos Santos, G.T. Feitosa, J.A. Osajima, R.L.P. Santos, and E.C. da Silva Filho: Desenvolvimento de biomaterial composto por hidroxiapatita e clorexidina para aplicação na cavidade oral. Cerâmica 65, 130 (2019).

    Article  CAS  Google Scholar 

  22. A. Abdal-hay, N. Abbasi, M. Gwiazda, S. Hamlet, and S. Ivanovski: Novel polycaprolactone/hydroxyapatite nanocomposite fibrous scaffolds by direct melt-electrospinning writing. Eur. Polym. J. 105, 257 (2018).

    Article  CAS  Google Scholar 

  23. Y. Wang, L. Liu, and S. Guo: Characterization of biodegradable and cytocompatible nano-hydroxyapatite/polycaprolactone porous scaffolds in degradation in vitro. Polym. Degrad. Stab. 95, 207 (2010).

    Article  CAS  Google Scholar 

  24. H. Tomás, C.S. Alves, and J. Rodrigues: Laponite®: A key nanoplatform for biomedical applications? Nanomed. Nanotechnol. Biol. Med. 14, 2407 (2018).

    Article  CAS  Google Scholar 

  25. S. Afewerki, L.S.S.M. Magalhães, A.D.R. Silva, T.D. Stocco, E.C. Silva Filho, F.R. Marciano, and A.O. Lobo: Bioprinting laponite for orthopedic applications. Adv. Healthcare Mater. 8, 1 (2019).

    Google Scholar 

  26. C. Wang, S. Wang, K. Li, Y. Ju, J. Li, Y. Zhang, J. Li, X. Liu, X. Shi, and Q. Zhao: Preparation of laponite bioceramics for potential bone tissue engineering applications. PLoS One 9, 1 (2014).

    Google Scholar 

  27. A. Mignon, D. Pezzoli, E. Prouvé, L. Lévesque, A. Arslan, N. Pien, D. Schaubroeck, J. Van Hoorick, D. Mantovani, S. Van Vlierberghe, and P. Dubruel: Preparation of laponite bioceramics for potential bone tissue engineering applications. PLoS One 136, 95 (2019).

    CAS  Google Scholar 

  28. J.M. Silva, H.S. Barud, A.B. Meneguin, V.R.L. Constantino, and S.J.L. Ribeiro: Applied clay science inorganic–organic bio-nanocomposite films based on laponite and cellulose nano fibers (CNF). Appl. Clay Sci. 168, 428 (2019).

    Article  CAS  Google Scholar 

  29. B.P. Nair, M. Sindhu, and P.D. Nair: Polycaprolactone-laponite composite scaffold releasing strontium ranelate for bone tissue engineering applications. Colloids Surf., B 143, 423 (2016).

    Article  CAS  Google Scholar 

  30. A.K. Gaharwar, S.M. Mihaila, A. Swami, A. Patel, S. Sant, R.L. Reis, A.P. Marques, M.E. Gomes, and A. Khademhosseini: Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Adv. Mater. 25, 3329 (2013).

    Article  CAS  Google Scholar 

  31. C.E. Corcione, F. Gervaso, F. Scalera, F. Montagna, A. Sannino, and A. Maffezzoli: The feasibility of printing polylactic acid—Nanohydroxyapatite composites using a low-cost fused deposition modeling 3D printer. J. Appl. Polym. Sci. 134, 1 (2016).

    Google Scholar 

  32. C. Esposito Corcione, F. Scalera, F. Gervaso, F. Montagna, A. Sannino, and A. Maffezzoli: One-step solvent-free process for the fabrication of high loaded PLA/HA composite filament for 3D printing. J. Therm. Anal. Calorim. 134, 575 (2018).

    Article  CAS  Google Scholar 

  33. R. Haq, A. Haq, S. Wahab, and N.I. Jaimi: Fabrication process of polymer nano-composite filament for fused deposition modeling. Appl. Mech. Mater. 466, 8 (2014).

    Google Scholar 

  34. J. Fu, X. Yu, and Y. Jin: 3D printing of vaginal rings with personalized shapes for controlled release of progesterone. Int. J. Pharm. 539, 75 (2018).

    Article  CAS  Google Scholar 

  35. Z. Muwaffak, A. Goyanes, V. Clark, A.W. Basit, S.T. Hilton, and S. Gaisford: Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings. Int. J. Pharm. 527, 161 (2017).

    Article  CAS  Google Scholar 

  36. D.M. Zuev, E.S. Klimashina, P.V. Evdokimov, Y.Y. Filippov, and V.I. Putlyaev: Preparation of β-Ca3(PO4)2/poly(D,L-lactide) and β-Ca3(PO4)2/poly(ε-caprolactone) biocomposite implants for bone substitution. Inorg. Mater. 54, 87 (2018).

    Article  CAS  Google Scholar 

  37. U.K. Roopavath, S. Malferrari, A. Van Haver, F. Verstreken, S.N. Rath, and D.M. Kalaskar: Optimization of extrusion based ceramic 3D printing process for complex bony designs. Mater. Des. 162, 263 (2019).

    Article  CAS  Google Scholar 

  38. M.R. da Cunha, M.C. Alves, A.R.A. Calegari, A. Iatecola, E.A. Galdeano, T.L. Galdeano, M.d.A.e S. Munhoz, A.M.d.G. Plepis, V.d.C.A. Martins, and M.M. Horn: In vivo study of the osteoregenerative potential of polymer membranes consisting of chitosan and carbon nanotubes. Mater. Res. 20, 819 (2017).

    Article  CAS  Google Scholar 

  39. T. Niamsap, N.T. Lam, and P. Sukyai: Production of hydroxyapatite-bacterial nanocellulose scaffold with assist of cellulose nanocrystals. Carbohydr. Polym. 205, 159 (2019).

    Article  CAS  Google Scholar 

  40. U. Ripamonti, J. Crooks, L. Khoali, and L. Roden: The induction of bone formation by coral-derived calcium carbonate/hydroxyapatite constructs. Biomaterials 30, 1428 (2009).

    Article  CAS  Google Scholar 

  41. E. Torres, V. Fombuena, A. Vallés-Lluch, and T. Ellingham: Improvement of mechanical and biological properties of polycaprolactone loaded with hydroxyapatite and halloysite nanotubes. Mater. Sci. Eng. C 75, 418 (2017).

    Article  CAS  Google Scholar 

  42. L.H. Chan-Chan, G. González-García, R.F. Vargas-Coronado, J.M. Cervantes-Uc, F. Hernández-Sánchez, A. Marcos-Fernandez, and J.V. Cauich-Rodríguez: Characterization of model compounds and poly(amide-urea) urethanes based on amino acids by FTIR, NMR, and other analytical techniques. Eur. Polym. J. 92, 27 (2017).

    Article  CAS  Google Scholar 

  43. T. Huang, C. Fan, M. Zhu, Y. Zhu, W. Zhang, and L. Li: 3D-printed scaffolds of biomineralized hydroxyapatite nanocomposite on silk fibroin for improving bone regeneration. Appl. Surf. Sci. 467, 345 (2019).

    Article  CAS  Google Scholar 

  44. A. Hivechi, S. Hajir Bahrami, and R.A. Siegel: Investigation of morphological, mechanical and biological properties of cellulose nanocrystal reinforced electrospun gelatin nanofibers. Int. J. Biol. Macromol. 124, 411 (2019).

    Article  CAS  Google Scholar 

  45. Z. Lin, R. Hu, J. Zhou, Y. Ye, Z. Xu, and C. Lin: A further insight into the adsorption mechanism of protein on hydroxyapatite by FTIR-ATR spectrometry. Spectrochim. Acta Mol. Biomol. Spectrosc. 173, 527 (2017).

    Article  CAS  Google Scholar 

  46. T. Batista, A.M. Chiorcea-Paquim, A.M.O. Brett, C.C. Schmitt, and M.G. Neumann: Laponite RD/polystyrenesulfonate nanocomposites obtained by photopolymerization. Appl. Clay Sci. 53, 27 (2011).

    Article  CAS  Google Scholar 

  47. J. Luo, H. Zhang, J. zhu, X. Cui, J. Gao, X. Wang, and J. Xiong: 3-D mineralized silk fibroin/polycaprolactone composite scaffold modified with polyglutamate conjugated with BMP-2 peptide for bone tissue engineering. Colloids Surf., B 163, 369 (2018).

    Article  CAS  Google Scholar 

  48. H. Bittiger, R.H. Marchessault, and W.D. Niegisch: Crystal structure of poly-ε-caprolactone. Acta Crystallogr. B 26, 1923 (2002).

    Article  Google Scholar 

  49. M. Ravi, S. Song, J. Wang, X. Tang, and Z. Zhang: Preparation and characterization of biodegradable poly(ε-caprolactone)-based gel polymer electrolyte films. Ionics 22, 661–670 (2016).

    Article  CAS  Google Scholar 

  50. S. Sathiyavimal, S. Vasantharaj, F. LewisOscar, A. Pugazhendhi, and R. Subashkumar: Biosynthesis and characterization of hydroxyapatite and its composite (hydroxyapatite-gelatin-chitosan-fibrin-bone ash) for bone tissue engineering applications. Int. J. Biol. Macromol. 129, 844 (2019).

    Article  CAS  Google Scholar 

  51. A. Gloria, B. Frydman, M.L. Lamas, A.C. Serra, M. Martorelli, J.F.J. Coelho, A.C. Fonseca, and M. Domingos: The influence of poly(ester amide) on the structural and functional features of 3D additive manufactured poly(ε-caprolactone) scaffolds. Mater. Sci. Eng. C 98, 994 (2019).

    Article  CAS  Google Scholar 

  52. M. Zanetti, L.R. Mazon, A.C. de Meneses, L.L. Silva, P.H.H. de Araújo, M.A. Fiori, and D. de Oliveira: Encapsulation of geranyl cinnamate in polycaprolactone nanoparticles. Mater. Sci. Eng. C 97, 198 (2019).

    Article  CAS  Google Scholar 

  53. O.G. da Silva, E.C. da Silva Filho, M.G. da Fonseca, L.N.H. Arakaki, and C. Airoldi: Hydroxyapatite organofunctionalized with silylating agents to heavy cation removal. J. Colloid Interface Sci. 302, 485 (2006).

    Article  CAS  Google Scholar 

  54. A.d.M.F. Guimarães, V.S.T. Ciminelli, and W.L. Vasconcelos: Surface modification of synthetic clay aimed at biomolecule adsorption: Synthesis and characterization. Mater. Res. 10, 37 (2007).

    Article  Google Scholar 

  55. N.K. de Moura, I.A.W.B. Siqueira, J.P.d.B. Machado, H.W. Kido, I.R. Avanzi, A.C.M. Rennó, E.d.S. Trichês, and F.R. Passador: Production and characterization of porous polymeric membranes of PLA/PCL blends with the addition of hydroxyapatite. J. Compos. Sci. 3, 45 (2019).

    Article  CAS  Google Scholar 

  56. B. Mangalampalli, N. Dumala, and P. Grover: Allium cepa root tip assay in assessment of toxicity of magnesium oxide nanoparticles and microparticles. J. Environ. Sci. 66, 125 (2018).

    Article  Google Scholar 

  57. M.D. Scherer, J.C.V. Sposito, W.F. Falco, A.B. Grisolia, L.H.C. Andrade, S.M. Lima, G. Machado, V.A. Nascimento, D.A. Gonçalves, H. Wender, S.L. Oliveira, and A.R.L. Caires: Cytotoxic and genotoxic effects of silver nanoparticles on meristematic cells of Allium cepa roots: A close analysis of particle size dependence. Sci. Total Environ. 660, 459 (2019).

    Article  CAS  Google Scholar 

  58. D. Surendran, R.S. Sarath Kumar, C.S. Geetha, and P.V. Mohanan: Long term effect of biodegradable polymer on oxidative. BIO 2, 37 (2012).

    Article  Google Scholar 

  59. M.C. Echave, P. Sánchez, J.L. Pedraz, and G. Orive: Progress of gelatin-based 3D approaches for bone regeneration. J. Drug Deliv. Sci. Technol. 42, 63 (2017).

    Article  CAS  Google Scholar 

  60. I. Silva de Sá, A.P. Peron, F.V. Leimann, G.N. Bressan, B.N. Krum, R. Fachinetto, J. Pinela, R.C. Calhelha, M.F. Barreiro, I.C.F.R. Ferreira, O.H. Gonçalves, and R.P. Ineu: In vitro and in vivo evaluation of enzymatic and antioxidant activity, cytotoxicity, and genotoxicity of curcumin-loaded solid dispersions. Food Chem. Toxicol. 125, 29 (2019).

    Article  CAS  Google Scholar 

  61. G.K. Srivastava, M.L. Alonso-Alonso, I. Fernandez-Bueno, M.T. Garcia-Gutierrez, F. Rull, J. Medina, R.M. Coco, and J.C. Pastor: Comparison between direct contact and extract exposure methods for PFO cytotoxicity evaluation. Sci. Rep. 8, 1 (2018).

    Google Scholar 

  62. V.J. Sunandhakumari, A.K. Vidhyadharan, A. Alim, D. Kumar, J. Ravindran, A. Krishna, and M. Prasad: Fabrication and in vitro characterization of bioactive glass/nano hydroxyapatite reinforced electrospun poly(ε-caprolactone) composite membranes for guided tissue regeneration. Bioengineering 5, 54 (2018).

    Article  CAS  Google Scholar 

  63. P. Morouço, S. Biscaia, T. Viana, M. Franco, C. Malça, A. Mateus, C. Moura, F.C. Ferreira, G. Mitchell, and N.M. Alves: Fabrication of poly(ε-caprolactone) scaffolds reinforced with cellulose nanofibers, with and without the addition of hydroxyapatite nanoparticles. BioMed Res. Int. 2016, 1–10 (2016).

    Article  CAS  Google Scholar 

  64. International Organization for Standardization. ISO 10993-5. In: Biological Evaluation of Medical Devices-Part 5: Tests for In Vitro Cytotoxicity. Geneve: ISO; 2009.

  65. S.M. Davachi, B. Shiroud Heidari, I. Hejazi, J. Seyfi, E. Oliaei, A. Farzaneh, and H. Rashedi: Interface modified polylactic acid/starch/poly ε-caprolactone antibacterial nanocomposite blends for medical applications. Carbohydr. Polym. 155, 336 (2017).

    Article  CAS  Google Scholar 

  66. M. Ghadiri, W. Chrzanowski, W.H. Lee, A. Fathi, F. Dehghani, and R. Rohanizadeh: Physico-chemical, mechanical, and cytotoxicity characterizations of laponite®/alginate nanocomposite. Appl. Clay Sci. 85, 64 (2013).

    Article  CAS  Google Scholar 

  67. A.J. Mieszawska, N. Fourligas, I. Georgakoudi, N.M. Ouhib, D.J. Belton, C.C. Perry, and D.L. Kaplan: Osteoinductive silk-silica composite biomaterials for bone regeneration. Biomaterials 31, 8902 (2010).

    Article  CAS  Google Scholar 

  68. M.C. Barbosa, N.R. Messmer, T.R. Brazil, F.R. Marciano, and A.O. Lobo: The effect of ultrasonic irradiation on the crystallinity of nano-hydroxyapatite produced via the wet chemical method. Mater. Sci. Eng. C 33, 2620 (2013).

    Article  CAS  Google Scholar 

  69. G. Fiskesjö: The allium test as a standard in environmental monitoring. Hereditas 102, 99 (1985).

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Brazilian National Council for Scientific and Technological Development (CNPq AOL Nos. 303752/2017-3 and 404683/2018-5) FCO acknowledgment Universidade Estacio bolsa de produtividade do programa de pesquisa e produtividade.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Josy Anteveli Osajima or Anderson Oliveira Lobo.

Additional information

3

These authors contributed equally to this work.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Araujo, F.P., Batista, I.T.S., de Oliveira, F.C. et al. Printing composite nanofilaments for use in a simple and low-cost 3D pen. Journal of Materials Research 35, 1154–1162 (2020). https://doi.org/10.1557/jmr.2020.77

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.77

Navigation