Skip to main content
Log in

The virtuous potential of chitosan oligosaccharide for promising biomedical applications

  • Biomedical Materials, Regenerative Medicine and Drug Delivery
  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Chitosan is one of the most versatile biopolymers available with established properties such as antimicrobial, antitumor, anti-inflammatory, mucoadhesive, and more. It has been in biomedical research for long, but still the bench-to-bedside translation is hampered because of viscosity and solubility issues. The only commercial application of chitosan has been in hemostatic dressings. Chitosan oligosaccharide (COS), on the other hand, is highly promising in a similar research area where chitosan’s limitations come into the way. COS is highly soluble in water, and its viscosity is very less than that of the parent chitosan. Although COS retains properties very similar to those of chitosan, there has been minuscule volume of research on this water-soluble chitosan. COS has been successfully used as a drug delivery vehicle in various research. COS has also shown to have osteogenic ability. It has been used as a coating on experimental orthopedic implants because of its antibacterial properties. As of now, COS is not a much-explored biopolymer, although it could be an important biopolymer for its capacity in biomedical research. This article reviews various properties and reports of COS relevant for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

ALT:

(Alanine Transaminase)

AMPK:

(AMP activated protein Kinase)

AST:

(Aspartate Transaminase)

CDK:

(Cyclin-Dependent Kinase)

COS:

(Chitosan Oligosaccharide)

COX:

(Cyclooxygenase)

DDA:

(Degree of Deacetylation)

DP:

(Degree of Polymerization)

HBV:

(Hepatitis B Virus)

HPLC:

(High Performance Liquid Chromatography)

IL:

(Interleukin)

LDL:

(Low Density Lipoprotein)

LPS:

(Lipopolysaccharide)

LVEF:

(left ventricular Ejection Fraction)

MALDI-TOF:

(matrix Assisted Laser Desorption Ionization-Time Of Flight)

MAPK:

(MAP Kinase)

MIC:

(Minimum Inhibitory Concentration)

MMP:

(Matrix Metalloprotease)

mRNA:

(messenger RNA)

NADPH:

(Nicotinamide Adenine Dinucleotide Phosphate)

NK:

Cells (Natural Killer Cells)

NMR:

(Nuclear Magnetic Resonance)

PLGA:

(Poly (Lactic-co-Glycolic Acid)

siRNA:

(small-interfering RNA)

TLR:

(Toll-Like Receptor)

TNF:

(Tumor Necrosis Factor)

ZnO:

(Zinc Oxide)

References

  1. R.C.F. Cheung, T.B. Ng, J.H. Wong, and W.Y. Chan: Chitosan: An update on potential biomedical and pharmaceutical applications. Mar. Drugs 14, 5156–5186 (2015).

    Article  CAS  Google Scholar 

  2. J. Sundaram, J. Pant, M.J. Goudie, S. Mani, and H. Handa: Antimicrobial and physicochemical characterization of biodegradable, nitric oxide- releasing nanocellulose-chitosan packaging membranes. J. Agric. Food Chem. 64, 5260–5266 (2016).

    Article  CAS  Google Scholar 

  3. M.N. Ravi Kumar: A review of chitin and chitosan applications. React. Funct. Polym. 46, 1–27 (2000).

    Article  CAS  Google Scholar 

  4. W. Xia, P. Liu, J. Zhang, and J. Chen: Biological activities of chitosan and chitooligosaccharides. Food Hydrocolloids 25, 170–179 (2011).

    Article  CAS  Google Scholar 

  5. A. Kumar, A. Vimal, and A. Kumar: Why chitosan? From properties to perspective of mucosal drug delivery. Int. J. Biol. Macromol. 91, 615–622 (2016).

    Article  CAS  Google Scholar 

  6. M. Rodríguez-Vázquez, B. Vega-Ruiz, R. Ramos-Zúñiga, D.A. Saldaña-Koppel, and L.F. Quiñones-Olvera: Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. BioMed Res. Int. 2015, 821279 (2015).

    Article  CAS  Google Scholar 

  7. J. Pant, J. Sundaram, M.J. Goudie, D.T. Nguyen, and H. Handa: Antibacterial 3D bone scaffolds for tissue engineering application. J. Biomed. Mater. Res. B Appl. Biomater. 107, 1068–1078 (2018).

    Article  CAS  Google Scholar 

  8. V. Zargar, M. Asghari, and A. Dashti: A review on chitin and chitosan polymers: Structure, chemistry, solubility, derivatives, and applications. ChemBioEng Rev. 2, 204–226 (2015).

    Article  Google Scholar 

  9. M. Pogorielov, O. Kalinkevich, V. Deineka, V. Garbuzova, A. Solodovnik, A. Kalinkevich, T. Kalinichenko, A. Gapchenko, A. Sklyar, and S. Danilchenko: Haemostatic chitosan coated gauze: In vitro interaction with human blood and in vivo effectiveness. Biomater. Res. 19, 1–10 (2015).

    Article  CAS  Google Scholar 

  10. E. Szymanska and K. Winnicka: Stability of chitosan—A challenge for pharmaceutical and biomedical applications. Mar. Drugs 13, 1819–1846 (2015).

    Article  CAS  Google Scholar 

  11. G. Lodhi, Y.S. Kim, J.W. Hwang, S.K. Kim, Y.J. Jeon, J.Y. Je, C.B. Ahn, S.H. Moon, B.T. Jeon, and P.J. Park: Chitooligosaccharide and its derivatives: Preparation and biological applications. BioMed Res. Int. 2014, 1–13 (2014).

    Google Scholar 

  12. C. Muanprasat and V. Chatsudthipong: Chitosan oligosaccharide: Biological activities and potential therapeutic applications. Pharmacol. Ther. 170, 80–97 (2017).

    Article  CAS  Google Scholar 

  13. W.J. Jung and R.D. Park: Bioproduction of chitooligosaccharides: Present and perspectives. Mar. Drugs 12, 5328–5356 (2014).

    Article  CAS  Google Scholar 

  14. F. Liaqat and R. Eltem: Chitooligosaccharides and their biological activities: A comprehensive review. Carbohydr. Polym. 184, 243–259 (2018).

    Article  CAS  Google Scholar 

  15. S. Liang, Y. Sun, and X. Dai: A review of the preparation, analysis and biological functions of chitooligosaccharide. Int. J. Mol. Sci. 19, E2197 (2018).

    Article  CAS  Google Scholar 

  16. B.B. Aam, E.B. Heggset, A.L. Norberg, M. Sørlie, K.M. Vårum, and V.G.H. Eijsink: Production of chitooligosaccharides and their potential applications in medicine. Mar. Drugs 8, 1482–1517 (2010).

    Article  CAS  Google Scholar 

  17. S. Kim and N. Rajapakse: Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review. Carbohydr. Polym. 62, 357–368 (2005).

    Article  CAS  Google Scholar 

  18. J. Madhuprakash, N.E. El Gueddari, B.M. Moerschbacher, and R.A. Podile: Production of bioactive chitosan oligosaccharides using the hypertransglycosy-lating chitinase-D from serratia proteamaculans. Bioresour. Technol. 198, 503–509 (2015).

    Article  CAS  Google Scholar 

  19. S. Naqvi, S. Cord-landwehr, R. Singh, F. Bernard, S. Kolkenbrock, N.E. El Gueddari, and B.M. Moerschbacher: A recombinant fungal chitin deacetylase produces fully defined chitosan oligomers with novel patterns of acetylation. Appl. Environ. Microbiol. 82, 6645–6655 (2016).

    Article  CAS  Google Scholar 

  20. P.E. Kidibule, P.S. Moriano, E.J. Ortega, M.R. Escudero, M.C. Limón, M. Remacha, F.J. Plou, J.S. Aparicio, and M.F. Lobato: Use of chitin and chitosan to produce new chitooligosaccharides by chitinase Chit42: Enzymatic activity and structural basis of protein specificity. Microb. Cell Fact. 17, 1–13 (2018).

    Article  CAS  Google Scholar 

  21. P. Pechsrichuang, S.B. Lorentzen, B.B. Aam, T.R. Tuveng, A.G. Hamre, V.G.H. Eijsink, and M. Yamabhai: Bioconversion of chitosan into chito-oligosaccharides (CHOS) using family 46 chitosanase from Bacillus subtilis (BsCsn46A). Carbohydr. Polym. 186, 420–428 (2018).

    Article  CAS  Google Scholar 

  22. A.B. Vishu Kumar, M.C. Varadaraj, R.G. Lalitha, and R.N. Tharanathan: Low molecular weight chitosans: Preparation with the aid of papain and characterization. Biochim. Biophys. Acta, Gen. Subj. 1670, 137–146 (2004).

    Article  CAS  Google Scholar 

  23. J.C. Fernandes, F.K. Tavaria, J.C. Soares, Ó.S. Ramos, M. João Monteiro, M.E. Pintado, and F.X. Malcata: Antimicrobial effects of chitosans and chitooligosaccharides, upon Staphylococcus aureus and Escherichia coli, in food model systems. Food Microbiol. 25, 922–928 (2008).

    Article  CAS  Google Scholar 

  24. I. Mateos-Aparicio, M. Mengíbar, and A. Heras: Effect of chito-oligosaccharides over human faecal microbiota during fermentation in batch cultures. Carbohydr. Polym. 137, 617–624 (2016).

    Article  CAS  Google Scholar 

  25. Y-x. Mei, X-y. Dai, W. Yang, X-w. Xu, and Y-x. Liang: Antifungal activity of chitooligosaccharides against the dermatophyte trichophyton rubrum. Int. J. Biol. Macromol. 77, 330–335 (2015).

    Article  CAS  Google Scholar 

  26. T-H. Kim, Y-J. Jo, Y-M. Ha, Y-H. Shon, B-J. Bae, and K-S. Nam: Effect of chitosan oligosaccharide on enzymes for cancer chemoprevention. J. Korean Cancer Assoc. 33, 64–70 (2001).

    Google Scholar 

  27. Y.J. Jeon and S.K. Kim: Antitumor activity of chitosan oligosaccharides produced in ultrafiltration membrance reactor system. J. Microbiol. Biotechnol. 12, 503–507 (2002).

    CAS  Google Scholar 

  28. K. Azuma, T. Osaki, S. Minami, and Y. Okamoto: Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides. J. Funct. Biomater. 6, 33–49 (2015).

    Article  CAS  Google Scholar 

  29. T. Mattaveewong, P. Wongkrasant, S. Chanchai, R. Pichyangkura, V. Chatsudthipong, and C. Muanprasat: Chitosan oligosaccharide suppresses tumor progression in a mouse model of colitis-associated colorectal cancer through AMPK activation and suppression of NF-κB and mTOR signaling. Carbohydr. Polym. 145, 30–36 (2016).

    Article  CAS  Google Scholar 

  30. W. Kunanusornchai, B. Witoonpanich, R. Pichyangkura, V. Chatsudthipong, and C. Muanprasat: Chitosan oligosaccharide suppresses synovial inflammation via AMPK activation: An in vitro and in vivo study. Pharmacol. Res. 113, 458–467 (2016).

    Article  CAS  Google Scholar 

  31. H.J. Yoon, M.E. Moon, H.S. Park, H.W. Kim, S.Y. Im, J.H. Lee, and Y.H. Kim: Effects of chitosan oligosaccharide (COS) on the glycerol-induced acute renal failure in vitro and in vivo. Food Chem. Toxicol. 46, 710–716 (2008).

    Article  CAS  Google Scholar 

  32. P.J. Park, J.Y. Je, and S.K. Kim: Free radical scavenging activity of chitooligosaccharides by electron spin resonance spectrometry. J. Agric. Food Chem. 51, 4624–4627 (2003).

    Article  CAS  Google Scholar 

  33. C. Xie, X. Wu, C. Long, Q. Wang, Z. Fan, S. Li, and Y. Yin: Chitosan oligosaccharide affects antioxidant defense capacity and placental amino acids transport of sows. BMC Vet. Res. 12, 1–8 (2016).

    Article  CAS  Google Scholar 

  34. J. Wan, F. Jiang, Q. Xu, D. Chen, B. Yu, Z. Huang, X. Mao, J. Yu, and J. He: New insights into the role of chitosan oligosaccharide in enhancing growth performance, antioxidant capacity, immunity, and intestinal development of weaned pigs. RSC Adv. 7, 9669–9679 (2017).

    Article  CAS  Google Scholar 

  35. T. Jiang, X. Xing, L. Zhang, Z. Liu, J. Zhao, and X. Liu: Chitosan oligosaccharides show protective effects in coronary heart disease by improving antioxidant capacity via the increase in intestinal probiotics. Oxid. Med. Cell. Longevity 2019, 1–11 (2019).

    Google Scholar 

  36. Y. Jiang, C. Fu, G. Liu, J. Guo, and Z. Su: Cholesterol-lowering effects and potential mechanisms of chitooligosaccharide capsules in hyperlipidemic rats. Food Nutr. Res. 62 (2018).

  37. J. Zheng, X. Yuan, G. Cheng, S. Jiao, C. Feng, X. Zhao, H. Yin, Y. Du, and H. Liu: Chitosan oligosaccharides improve the disturbance in glucose metabolism and reverse the dysbiosis of gut microbiota in diabetic mice. Carbohydr. Polym. 190, 77–86 (2018).

    Article  CAS  Google Scholar 

  38. S. Jeong, J. Min Cho, Y.I. Kwon, S.C. Kim, D. Yeob Shin, and J. Ho Lee: Chitosan oligosaccharide (GO2KA1) improves postprandial glycemic response in subjects with impaired glucose tolerance and impaired fasting glucose and in healthy subjects: A crossover, randomized controlled trial. Nutr. Diabetes 9, 31 (2019).

    Article  CAS  Google Scholar 

  39. D. Zhu, Q. Yan, J. Liu, X. Wu, and Z. Jiang: Can functional oligosaccharides reduce the risk of diabetes mellitus? FASEB J. 33, 11655–11667 (2019).

    Article  CAS  Google Scholar 

  40. S.Y. Chae, M.K. Jang, and J.W. Nah: Influence of molecular weight on oral absorption of water soluble chitosans. J. Control. Release 102, 383–394 (2005).

    Article  CAS  Google Scholar 

  41. F.C. MacLaughlin, R.J. Mumper, J. Wang, J.M. Tagliaferri, I. Gill, M. Hinchcliffe, and A.P. Rolland: Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery. J. Control. Release 56, 259–272 (1998).

    Article  CAS  Google Scholar 

  42. F.Q. Hu, X.L. Wu, Y.Z. Du, J. You, and H. Yuan: Cellular uptake and cytotoxicity of shell crosslinked stearic acid-grafted chitosan oligosaccharide micelles encapsulating doxorubicin. Eur. J. Pharm. Biopharm. 69, 117–125 (2008).

    Article  CAS  Google Scholar 

  43. Y.Z. Du, L. Wang, H. Yuan, X.H. Wei, and F.Q. Hu: Preparation and characteristics of linoleic acid-grafted chitosan oligosaccharide micelles as a carrier for doxorubicin. Colloids Surf., B 69, 257–263 (2009).

    Article  CAS  Google Scholar 

  44. Y.Z. Du, L. Wang, H. Yuan, and F.Q. Hu: Linoleic acid-grafted chitosan oligosaccharide micelles for intracellular drug delivery and reverse drug resistance of tumor cells. Int. J. Biol. Macromol. 48, 215–222 (2011).

    Article  CAS  Google Scholar 

  45. Y.Z. Du, P. Lu, J.P. Zhou, H. Yuan, and F.Q. Hu: Stearic acid grafted chitosan oligosaccharide micelle as a promising vector for gene delivery system: Factors affecting the complexation. Int. J. Pharm. 391, 260–266 (2010).

    Article  CAS  Google Scholar 

  46. Q. Li, Y.Z. Du, H. Yuan, X.G. Zhang, J. Miao, F.D. Cui, and F.Q. Hu: Synthesis of Lamivudine stearate and antiviral activity of stearic acid-g-chitosan oligosaccharide polymeric micelles delivery system. Eur. J. Pharm. Sci. 41, 498–507 (2010).

    Article  CAS  Google Scholar 

  47. U. Termsarasab, H.J. Cho, D.H. Kim, S. Chong, S.J. Chung, C.K. Shim, H.T. Moon, and D.D. Kim: Chitosan oligosaccharide–arachidic acid-based nanoparticles for anti-cancer drug delivery. Int. J. Pharm. 441, 373–380 (2012).

    Article  CAS  Google Scholar 

  48. H. Zhang, X. Huang, Y. Sun, J. Xing, A. Yamamoto, and Y. Gao: Absorption-improving effects of chitosan oligomers based on their mucoadhesive properties: A comparative study on the oral and pulmonary delivery of calcitonin. Drug Deliv. 23, 2419–2427 (2016).

    Article  CAS  Google Scholar 

  49. S. Dyawanapelly, U. Koli, V. Dharamdasani, R. Jain, and P. Dandekar: Improved mucoadhesion and cell uptake of chitosan and chitosan oligosaccharide surface-modified polymer nanoparticles for mucosal delivery of proteins. Drug Deliv. Transl. Res. 6, 365–379 (2016).

    Article  CAS  Google Scholar 

  50. M.S. Moorthy, G. Hoang, P. Manivasagan, S. Mondal, T.T. Vy Phan, H. Kim, and J. Oh: Chitosan oligosaccharide coated mesoporous silica nanoparticles for pH-stimuli responsive drug delivery applications. J. Porous Mater. 26, 217–226 (2019).

    Article  CAS  Google Scholar 

  51. K. Taniuchi, T. Yawata, M. Tsuboi, and T. Ueba: Efficient delivery of small interfering RNAs targeting particular mRNAs into pancreatic cancer cells inhibits invasiveness and metastasis of pancreatic tumors. Oncotarget 10, 2869–2886 (2019).

    Article  Google Scholar 

  52. R. Lieder, S.T. Reynisdóttir, F. Thormódsson, C-H. Ng, J.M. Einarsson, J. Gíslason, J. Bjornsson, S. Gudmundsson, P.H. Petersen, and O.E. Sigurjonsson: Glucosamine increases the expression of YKL-40 and osteogenic marker genes in hMSC during osteogenic differentiation. Nat. Prod. Bioprospect. 2, 87–91 (2012).

    Article  CAS  Google Scholar 

  53. R. Lieder, F. Thormodsson, C.H. Ng, J.M. Einarsson, J. Gislason, P.H. Petersen, and O.E. Sigurjonsson: Chitosan and Chitin Hexamers affect expansion and differentiation of mesenchymal stem cells differently. Int. J. Biol. Macromol. 51, 675–680 (2012).

    Article  CAS  Google Scholar 

  54. C-K. Wei and S-J. Ding: Dual functional bone implants with antibacterial ability and osteogenic activity. J. Mater. Chem. B 5, 1943–1953 (2017).

    Article  CAS  Google Scholar 

  55. A. Kumar and A. Kumar: Fabrication of eggshell membrane–based novel buccal mucosa–mimetic surface and mucoadhesion testing of chitosan oligosaccharide films. J. Mater. Res. 34, 3777–3786 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from the Department of Biotechnology, National Institute of Technology, Raipur (Chhattisgarh), India, for completion of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Awanish Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kumar, A. The virtuous potential of chitosan oligosaccharide for promising biomedical applications. Journal of Materials Research 35, 1123–1134 (2020). https://doi.org/10.1557/jmr.2020.76

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.76

Navigation