Skip to main content
Log in

Growth characteristics of BaxSr(1−x)TiO3 thin films produced by micro-arc oxidation

  • Functional Materials
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

BaxSr(1−x)TiO3 (BST) thin films were fabricated on a Ti substrate using micro-arc oxidation (MAO) in an aqueous solution with the addition of 0.6 M Ba(OH)2, 0.4 M Sr(OH)2, and 0.05 M EDTA. The morphology, composition, and electrical properties of BST films prepared under different processing times were characterized, and MAO growth characteristics of BST films were discussed. Results indicate that dielectric and ferroelectric properties of BST films are positively correlated with surface morphology dependent on MAO spark patterns. To obtain a smooth and compact film, the large spark stage should be avoided. During MAO processes, elements from the substrate and electrolyte solution migrate in opposite directions under an electric field, resulting in Ba, Sr, Ti, and O elements exhibiting a gradient distribution between the BST film and the Ti substrate. BST film prepared using MAO is composed of two layers: an outer loose layer and an inner dense layer. In addition, because of the position of discharge breakdown continually changing, the interface between the film and the substrate is uneven. As MAO processing time increases, BST film thickness increases and ferroelectric property improves. When processing time is 15 min, the residual polarization intensity (2Pr) of the BST film is about 4.9 μC/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Irzaman, M. Dahrul, B. Yuliarto, K.A. Hammam, and H. Alatas: Effects of Li and Cu dopants on the crystal structure of Ba0.65Sr0.35TiO3 thin films. Ferroelectrics Lett.45, 49 (2018).

    Article  CAS  Google Scholar 

  2. R. Dewi: Formation and characterization of typical films Ba0.2Sr0.8TiO3 using XRD, FESEM, and spectroscopy impedance. J. Phys.: Conf. Ser.1120, 012009 (2018).

    Google Scholar 

  3. R.B. Upadhyay, K. Jalaja, and U.S. Joshi: Structural and electrical properties of Ba0.6Sr0.4TiO3 thin film on LNO/Pt bottom electrode. AIP Conf. Proc.1837, 030001 (2017).

    Article  Google Scholar 

  4. C. Liu and P. Liu: Microstructure and dielectric properties of BST ceramics derived from high-energy ball-milling. J. Alloys Compd.584, 114–118 (2014).

    Article  CAS  Google Scholar 

  5. E.K. Palupil, R. Umam, B.B. Andriana, H. Sato, B. Yuliarto, H. Alatas, and Irzaman: Micro-Raman spectroscopy investigation of chlorophyll-doping effects on Ba0.2Sr0.8TiO3 thin film. J. Phys.: Conf. Ser.1155, 012044 (2019).

    Google Scholar 

  6. R.R. Romanofsky and R.C. Toonen: Past, present, and future of ferroelectric and multiferroic thin films for array antennas. Multidimens. Syst. Signal Process.29, 475–487 (2018).

    Article  Google Scholar 

  7. P. Singh, P.K. Rout, M. Singh, R.K. Rakshit, and A. Dogra: Ferroelectric memory resistive behavior in BaTiO3/Nb doped SrTiO3 heterojunctions. Thin Solid Films643, 60–64 (2017).

    Article  CAS  Google Scholar 

  8. N. Kevin, C. Borderon, R. Renoud, A. Ghalem, A. Crunteanu, L. Huitema, F. Dumas-Bouchiat, P. Marchet, C. Champeaux, and H.W. Gundel: Diffuse phase transition of BST thin films in the microwave domain. Appl. Phys. Lett.112, 262901 (2018).

    Article  CAS  Google Scholar 

  9. L. Lai, Y. Xu, Y. Ren, H. Gao, X. Wang, J. Zhu, Y. He, and X. Zhu: Low loss and highly tunable (Ba,Sr)(Ti,Mn)O3/(Ba,Sr) TiO3 bilayered films for electrically tunable microwave device applications. J. Mater. Sci.: Mater. Electron.28, 5718–5724 (2017).

    CAS  Google Scholar 

  10. E.K. Palupi, H. Alatas, and Irzaman: Analysis of energy gap and the refractive index of barium strontium titanate (Ba0.2Sr0.8TiO3) films doped of chlorophyll from green leafy vegetables. IOP Conf. Ser. Earth Environ. Sci.209, 012012 (2018).

    Article  Google Scholar 

  11. B. Vigneshwaran, P. Kuppusami, A. Panda, A. Singh, and H. Sreemoolanadhan: Microstructure and optical properties of Ba0.6Sr0.4TiO3 thin films prepared by pulsed laser deposition. Mater. Res. Express5, 066420 (2018).

    Article  CAS  Google Scholar 

  12. M. Bordbari, M.J. Eshraghi, N. Naderi, and A.S.A.H. Zadeh: Investigation of structural and optical properties of oblique angle sputter deposited barium strontium titanate nanostructures. Mater. Res. Express6, 025009 (2018).

    Article  CAS  Google Scholar 

  13. K. Rachut, J. Thorsten, M. Bayer, and J.O. Wolff, B. Kmet, A. Benčan, and A. Klein: Off-stoichiometry of magnetron sputtered Ba1‒xSrxTiO3 thin films. Phys. Status Solidi B256, 1900148 (2019).

    Article  CAS  Google Scholar 

  14. F.W. Jamaluddin, M.F. Abdul Khalid, M.H. Mamat, A.S. Zoolfakar, M.A. Zulkefle, M. Rusop, and Z. Awang: Characterization of barium strontium titanate thin films on sapphire substrate prepared via RF magnetron sputtering system. AIP Conf. Proc.1963, 020065 (2018).

    Article  CAS  Google Scholar 

  15. N. Abu Bakar, J. Adnan, R.A.M. Osman, Z.A.Z. Jamal, M.A. Idris, and W.M.F. Wan Nik: Sol gel preparation methods for barium strontium titanate based solar devices. Phys. Status Solidi2068, 020057 (2019).

    Google Scholar 

  16. P. Ge, X. Tang, Q. Liu, Y. Jiang, W. Li, and J. Luo: Energy storage properties and electrocaloric effect of Ba0.65Sr0.35TiO3 ceramics near room temperature. J. Mater. Sci.: Mater. Electron.29, 1075–1081 (2018).

    CAS  Google Scholar 

  17. A. Elbasset, S. Sayouri, F. Abdi, T. Lamcharfi, and L. Mrharrab: Effect of Sr addition on piezoelectric properties and the transition temperature of BaTiO3. Glass Phys. Chem.43, 91–97 (2017).

    Article  CAS  Google Scholar 

  18. J. Pundareekam Goud, M.S. Alkathy, K. Sandeep, S. Ramakanthand, and K.C. James Raju: Influence of laser fluence on structural, optical, and microwave dielectric properties of pulsed laser deposited Ba0.6Sr0.4TiO3 thin films. J. Mater. Sci.: Mater. Electron.29, 15973 (2018).

    Google Scholar 

  19. M. Reinke, Y. Kuzminykh, F. Eltes, S. Abel, T. LaGrange, A. Neels, F. Jean, and P. Hoffmann: Low temperature epitaxial barium titanate thin film growth in high vacuum CVD. Adv. Mater. Interfaces4, 1700116 (2017).

    Article  CAS  Google Scholar 

  20. K. Yoshiizumi, T. Tai, M. Nishide, H. Shima, H. Funakubo, K. Nishida, and T. Yamamoto: Growth and evaluation of epitaxial BaTiO3 thin films of less than 100 nm thickness by metal-organic chemical vapor deposition. Jpn. J. Appl. Phys.54, 035501 (2015).

    Article  CAS  Google Scholar 

  21. D. Yan, L. Luo, Y. Zhang, Z. Peng, H. Liu, D. Xiao, T. Liu, X. Lai, and J. Zhu: Influence of deposition temperature on microstructure and electrical properties of modified (Ba,Sr)TiO3 ferroelectric thin films. Ceram. Int.41, S520–S525 (2015).

    Article  CAS  Google Scholar 

  22. S. Xiao, W. Jiang, K. Luo, H.X. Jin, and Z. Lin: Structure and ferroelectric properties of barium titanate films synthesized by sol–gel method. Mater. Chem. Phys.127, 420–425 (2011).

    CAS  Google Scholar 

  23. G. Shuster, O. Kreinin, E. Lakin, N.P. Kuzmina, and E. Zolotoyabko: MOCVD growth of barium-strontium titanate films using newly developed barium and strontium precursors. Thin Solid Films518, 4658–4661 (2010).

    Article  CAS  Google Scholar 

  24. M. Tezuka and M. Iwasaki: Plasma-induced degradation of aniline in aqueous solution. Thin Solid Films386, 204–207 (2001).

    Article  CAS  Google Scholar 

  25. Y-K. Shin, W-S. Chae, Y-W. Song, and Y-M. Sung: Formation of titania photocatalyst films by microarc oxidation of Ti and Ti–6Al–4V alloys. Electrochem. Commun.8, 465–470 (2006).

    Article  CAS  Google Scholar 

  26. M-H. Hong, D-H. Lee, K-M. Kim, and Y-K. Lee: Study on bioactivity and bonding strength between Ti alloy substrate and TiO2 film by micro-arc oxidation. Thin Solid Films519, 7065–7070 (2011).

    Article  CAS  Google Scholar 

  27. S.V. Gnedenkov, P.S. Gordienko, O.A. Khrisanfova, T.M. Scorobogatova, and S.L. Sinebrukhov: Formation of BaTiO3 coatings on titanium by microarc oxidation method. J. Mater. Sci.37, 2263–2265 (2002).

    Article  CAS  Google Scholar 

  28. C. Wu and F. Lu: Synthesis of barium titanate films by plasma electrolytic oxidation at room electrolyte temperature. Surf. Coating. Technol.199, 225–230 (2005).

    Article  CAS  Google Scholar 

  29. J. Peng, B. Han, W. Li, J. Du, P. Guo, and D. Han: Study on the microstructural evolution of BaTiO3 on titanium substrate during MAO. Mater. Lett.62, 1801–1804 (2008).

    Article  CAS  Google Scholar 

  30. W. Huang, W. Li, and B. Han: Study on BaTiO3 films prepared by AC power microarc oxidation. Sci. China, Ser. E: Technol. Sci.52, 2195–2199 (2009).

    Article  CAS  Google Scholar 

  31. H.F. Guo, M.Z. An, H.B. Huo, S. Xu, and L.J. Wu: Microstructure characteristic of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation in alkaline silicate solutions. Appl. Surf. Sci.252, 7911–7916 (2006).

    Article  CAS  Google Scholar 

  32. Z. Zhao, Q. Pan, J. Yan, J. Ye, and Y. Li: Direct current micro-arc oxidation coatings on Al–Zn–Mg–Mn–Zr extruded alloy with tunable structures and properties templated by discharge stages. Vacuum50, 155–165 (2018).

    Article  CAS  Google Scholar 

  33. J. Schreckenbach, F. Schlottig, G. Marx, W.M. Kriven, O.O. Popoola, M.H. Jilavi, and S.D. Brown: Preparation and microstructure characterization of anodic spark deposited barium titanate conversion layers. J. Mater. Res.14, 1437–1443 (1999).

    Article  CAS  Google Scholar 

  34. A.L. Yerokhin, N. Xie, A. Leyland, A. Matthews, and S.J. Dowey: Plasma electrolysis for surface engineering. Surf. Coating. Technol.122, 73–93 (1999).

    Article  CAS  Google Scholar 

  35. Q. Li, W. Yang, C. Liu, D. Wang, and J. Liang: Correlations between the growth mechanism and properties of micro-arc oxidation coatings on titanium alloy: Effects of electrolytes. Surf. Coating. Technol.316, 162–170 (2017).

    Article  CAS  Google Scholar 

  36. W. Tang, J. Yan, G. Yang, G. Gan, J. Du, J. Zhang, Y. Liu, Z. Shi, and J. Yi: Effect of electrolytic solution concentrations on surface hydrophilicity of micro-arc oxidation ceramic film based on Ti6Al4V titanium alloy. Rare Met. Mater. Eng.43, 2883–2888 (2014).

    Article  Google Scholar 

  37. Y. Chen, Z. Pen, Q. Wang, and J. Zhu: Crystalline structure, ferroelectric properties, and electrical conduction characteristics of W/Cr Co-doped Bi4Ti3O12 ceramics. J. Alloys Compd. 612, 120–125 (2014).

  38. R. Sankar Ganesh, S.K. Sharma, N. Abinnas, E. Durgadevi, P. Raji, S. Ponnusamy, C. Muthamizhchelvan, Y. Hayakawa, and D.Y. Kim: Fabrication of the flexible nanogenerator from BTO nanopowders on graphene coated PMMA substrates by sol–gel method. Mater. Chem. Phys.192, 274–281 (2017).

    Article  CAS  Google Scholar 

  39. M.S. Tsai, S.C. Sun, and T.Y. Tseng: Effect of oxygen to argon ratio on properties of (Ba,Sr)TiO3 thin films prepared by radio-frequency magnetron sputtering. J. Appl. Phys.82, 3482–3487 (1997).

    Article  CAS  Google Scholar 

  40. M. Shen, Z. Dong, Z. Gan, and S. Ge: Oxygen-related dielectric relaxation and leakage characteristics of Pt/(Ba,Sr)TiO3/Pt thin-film capacitors. Appl. Phys. Lett.80, 2538–2540 (2002).

    Article  CAS  Google Scholar 

  41. C.H. Park and D.J. Chadi: Microscopic study of oxygen-vacancy defects in ferroelectric perovskites. Phys. Rev. B57, 961–964 (1998).

    Google Scholar 

  42. S. Ezhilvalavan and T-Y. Tseng: Progress in the developments of (Ba,Sr)TiO3(BST) thin films for Gigabit era DRAMs. Mater. Chem. Phys.65, 227–248 (2000).

    Article  CAS  Google Scholar 

  43. J.X. Liao, C.R. Yang, Z. Tian, H.G. Yang, and L. Jin: The influence of post-annealing on the chemical structures and dielectric properties of the surface layer of Ba0.6Sr0.4TiO3 films. J. Phys. D: Appl. Phys.39, 2473 (2006).

    Article  CAS  Google Scholar 

  44. M. Es-Souni, N. Zhang, S. Iakovlev, C-H. Solterbeck, and A. Piorra: Thickness and erbium doping effects on the electrical properties of lead zirconate titanate thin films. Thin Solid Films440, 26–34 (2003).

    Article  CAS  Google Scholar 

  45. J.C. Shin, C.S. Hwang, H.J. Kim, and S.O. Park: Leakage current of sol–gel derived Pb(Zr,Ti)O3 thin films having Pt electrodes. Appl. Phys. Lett.75, 3411 (1999).

    Article  CAS  Google Scholar 

  46. X.Z. MinWang, W. Li, G. Cao, and A. Xiang: Enhanced dielectric performance of BaxSr(1‒x)TiO3 films prepared by the direct current micro-arc oxidation in the presence of ethylenediamine tetraacetic acid. Thin Solid Films694, 137579 (2020).

    Article  CAS  Google Scholar 

  47. Z. Saroukhani, N. Tahmasebi, S.M. Mahdavi, and N. Ali: Effect of working pressure and annealing temperature on microstructure and surface chemical composition of barium strontium titanate films grown by pulsed laser deposition. Bull. Mater. Sci.38, 1645–1650 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Science and Technology Planning Project of Guangdong Province (No. 2016A010103040) and the Educational Commission of Guangdong Province (No. 2015KTSCX084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Zuo, X., Li, K. et al. Growth characteristics of BaxSr(1−x)TiO3 thin films produced by micro-arc oxidation. Journal of Materials Research 35, 1703–1714 (2020). https://doi.org/10.1557/jmr.2020.66

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.66

Navigation