Abstract
BaxSr(1−x)TiO3 (BST) thin films were fabricated on a Ti substrate using micro-arc oxidation (MAO) in an aqueous solution with the addition of 0.6 M Ba(OH)2, 0.4 M Sr(OH)2, and 0.05 M EDTA. The morphology, composition, and electrical properties of BST films prepared under different processing times were characterized, and MAO growth characteristics of BST films were discussed. Results indicate that dielectric and ferroelectric properties of BST films are positively correlated with surface morphology dependent on MAO spark patterns. To obtain a smooth and compact film, the large spark stage should be avoided. During MAO processes, elements from the substrate and electrolyte solution migrate in opposite directions under an electric field, resulting in Ba, Sr, Ti, and O elements exhibiting a gradient distribution between the BST film and the Ti substrate. BST film prepared using MAO is composed of two layers: an outer loose layer and an inner dense layer. In addition, because of the position of discharge breakdown continually changing, the interface between the film and the substrate is uneven. As MAO processing time increases, BST film thickness increases and ferroelectric property improves. When processing time is 15 min, the residual polarization intensity (2Pr) of the BST film is about 4.9 μC/cm2.
Similar content being viewed by others
References
Irzaman, M. Dahrul, B. Yuliarto, K.A. Hammam, and H. Alatas: Effects of Li and Cu dopants on the crystal structure of Ba0.65Sr0.35TiO3 thin films. Ferroelectrics Lett.45, 49 (2018).
R. Dewi: Formation and characterization of typical films Ba0.2Sr0.8TiO3 using XRD, FESEM, and spectroscopy impedance. J. Phys.: Conf. Ser.1120, 012009 (2018).
R.B. Upadhyay, K. Jalaja, and U.S. Joshi: Structural and electrical properties of Ba0.6Sr0.4TiO3 thin film on LNO/Pt bottom electrode. AIP Conf. Proc.1837, 030001 (2017).
C. Liu and P. Liu: Microstructure and dielectric properties of BST ceramics derived from high-energy ball-milling. J. Alloys Compd.584, 114–118 (2014).
E.K. Palupil, R. Umam, B.B. Andriana, H. Sato, B. Yuliarto, H. Alatas, and Irzaman: Micro-Raman spectroscopy investigation of chlorophyll-doping effects on Ba0.2Sr0.8TiO3 thin film. J. Phys.: Conf. Ser.1155, 012044 (2019).
R.R. Romanofsky and R.C. Toonen: Past, present, and future of ferroelectric and multiferroic thin films for array antennas. Multidimens. Syst. Signal Process.29, 475–487 (2018).
P. Singh, P.K. Rout, M. Singh, R.K. Rakshit, and A. Dogra: Ferroelectric memory resistive behavior in BaTiO3/Nb doped SrTiO3 heterojunctions. Thin Solid Films643, 60–64 (2017).
N. Kevin, C. Borderon, R. Renoud, A. Ghalem, A. Crunteanu, L. Huitema, F. Dumas-Bouchiat, P. Marchet, C. Champeaux, and H.W. Gundel: Diffuse phase transition of BST thin films in the microwave domain. Appl. Phys. Lett.112, 262901 (2018).
L. Lai, Y. Xu, Y. Ren, H. Gao, X. Wang, J. Zhu, Y. He, and X. Zhu: Low loss and highly tunable (Ba,Sr)(Ti,Mn)O3/(Ba,Sr) TiO3 bilayered films for electrically tunable microwave device applications. J. Mater. Sci.: Mater. Electron.28, 5718–5724 (2017).
E.K. Palupi, H. Alatas, and Irzaman: Analysis of energy gap and the refractive index of barium strontium titanate (Ba0.2Sr0.8TiO3) films doped of chlorophyll from green leafy vegetables. IOP Conf. Ser. Earth Environ. Sci.209, 012012 (2018).
B. Vigneshwaran, P. Kuppusami, A. Panda, A. Singh, and H. Sreemoolanadhan: Microstructure and optical properties of Ba0.6Sr0.4TiO3 thin films prepared by pulsed laser deposition. Mater. Res. Express5, 066420 (2018).
M. Bordbari, M.J. Eshraghi, N. Naderi, and A.S.A.H. Zadeh: Investigation of structural and optical properties of oblique angle sputter deposited barium strontium titanate nanostructures. Mater. Res. Express6, 025009 (2018).
K. Rachut, J. Thorsten, M. Bayer, and J.O. Wolff, B. Kmet, A. Benčan, and A. Klein: Off-stoichiometry of magnetron sputtered Ba1‒xSrxTiO3 thin films. Phys. Status Solidi B256, 1900148 (2019).
F.W. Jamaluddin, M.F. Abdul Khalid, M.H. Mamat, A.S. Zoolfakar, M.A. Zulkefle, M. Rusop, and Z. Awang: Characterization of barium strontium titanate thin films on sapphire substrate prepared via RF magnetron sputtering system. AIP Conf. Proc.1963, 020065 (2018).
N. Abu Bakar, J. Adnan, R.A.M. Osman, Z.A.Z. Jamal, M.A. Idris, and W.M.F. Wan Nik: Sol gel preparation methods for barium strontium titanate based solar devices. Phys. Status Solidi2068, 020057 (2019).
P. Ge, X. Tang, Q. Liu, Y. Jiang, W. Li, and J. Luo: Energy storage properties and electrocaloric effect of Ba0.65Sr0.35TiO3 ceramics near room temperature. J. Mater. Sci.: Mater. Electron.29, 1075–1081 (2018).
A. Elbasset, S. Sayouri, F. Abdi, T. Lamcharfi, and L. Mrharrab: Effect of Sr addition on piezoelectric properties and the transition temperature of BaTiO3. Glass Phys. Chem.43, 91–97 (2017).
J. Pundareekam Goud, M.S. Alkathy, K. Sandeep, S. Ramakanthand, and K.C. James Raju: Influence of laser fluence on structural, optical, and microwave dielectric properties of pulsed laser deposited Ba0.6Sr0.4TiO3 thin films. J. Mater. Sci.: Mater. Electron.29, 15973 (2018).
M. Reinke, Y. Kuzminykh, F. Eltes, S. Abel, T. LaGrange, A. Neels, F. Jean, and P. Hoffmann: Low temperature epitaxial barium titanate thin film growth in high vacuum CVD. Adv. Mater. Interfaces4, 1700116 (2017).
K. Yoshiizumi, T. Tai, M. Nishide, H. Shima, H. Funakubo, K. Nishida, and T. Yamamoto: Growth and evaluation of epitaxial BaTiO3 thin films of less than 100 nm thickness by metal-organic chemical vapor deposition. Jpn. J. Appl. Phys.54, 035501 (2015).
D. Yan, L. Luo, Y. Zhang, Z. Peng, H. Liu, D. Xiao, T. Liu, X. Lai, and J. Zhu: Influence of deposition temperature on microstructure and electrical properties of modified (Ba,Sr)TiO3 ferroelectric thin films. Ceram. Int.41, S520–S525 (2015).
S. Xiao, W. Jiang, K. Luo, H.X. Jin, and Z. Lin: Structure and ferroelectric properties of barium titanate films synthesized by sol–gel method. Mater. Chem. Phys.127, 420–425 (2011).
G. Shuster, O. Kreinin, E. Lakin, N.P. Kuzmina, and E. Zolotoyabko: MOCVD growth of barium-strontium titanate films using newly developed barium and strontium precursors. Thin Solid Films518, 4658–4661 (2010).
M. Tezuka and M. Iwasaki: Plasma-induced degradation of aniline in aqueous solution. Thin Solid Films386, 204–207 (2001).
Y-K. Shin, W-S. Chae, Y-W. Song, and Y-M. Sung: Formation of titania photocatalyst films by microarc oxidation of Ti and Ti–6Al–4V alloys. Electrochem. Commun.8, 465–470 (2006).
M-H. Hong, D-H. Lee, K-M. Kim, and Y-K. Lee: Study on bioactivity and bonding strength between Ti alloy substrate and TiO2 film by micro-arc oxidation. Thin Solid Films519, 7065–7070 (2011).
S.V. Gnedenkov, P.S. Gordienko, O.A. Khrisanfova, T.M. Scorobogatova, and S.L. Sinebrukhov: Formation of BaTiO3 coatings on titanium by microarc oxidation method. J. Mater. Sci.37, 2263–2265 (2002).
C. Wu and F. Lu: Synthesis of barium titanate films by plasma electrolytic oxidation at room electrolyte temperature. Surf. Coating. Technol.199, 225–230 (2005).
J. Peng, B. Han, W. Li, J. Du, P. Guo, and D. Han: Study on the microstructural evolution of BaTiO3 on titanium substrate during MAO. Mater. Lett.62, 1801–1804 (2008).
W. Huang, W. Li, and B. Han: Study on BaTiO3 films prepared by AC power microarc oxidation. Sci. China, Ser. E: Technol. Sci.52, 2195–2199 (2009).
H.F. Guo, M.Z. An, H.B. Huo, S. Xu, and L.J. Wu: Microstructure characteristic of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation in alkaline silicate solutions. Appl. Surf. Sci.252, 7911–7916 (2006).
Z. Zhao, Q. Pan, J. Yan, J. Ye, and Y. Li: Direct current micro-arc oxidation coatings on Al–Zn–Mg–Mn–Zr extruded alloy with tunable structures and properties templated by discharge stages. Vacuum50, 155–165 (2018).
J. Schreckenbach, F. Schlottig, G. Marx, W.M. Kriven, O.O. Popoola, M.H. Jilavi, and S.D. Brown: Preparation and microstructure characterization of anodic spark deposited barium titanate conversion layers. J. Mater. Res.14, 1437–1443 (1999).
A.L. Yerokhin, N. Xie, A. Leyland, A. Matthews, and S.J. Dowey: Plasma electrolysis for surface engineering. Surf. Coating. Technol.122, 73–93 (1999).
Q. Li, W. Yang, C. Liu, D. Wang, and J. Liang: Correlations between the growth mechanism and properties of micro-arc oxidation coatings on titanium alloy: Effects of electrolytes. Surf. Coating. Technol.316, 162–170 (2017).
W. Tang, J. Yan, G. Yang, G. Gan, J. Du, J. Zhang, Y. Liu, Z. Shi, and J. Yi: Effect of electrolytic solution concentrations on surface hydrophilicity of micro-arc oxidation ceramic film based on Ti6Al4V titanium alloy. Rare Met. Mater. Eng.43, 2883–2888 (2014).
Y. Chen, Z. Pen, Q. Wang, and J. Zhu: Crystalline structure, ferroelectric properties, and electrical conduction characteristics of W/Cr Co-doped Bi4Ti3O12 ceramics. J. Alloys Compd. 612, 120–125 (2014).
R. Sankar Ganesh, S.K. Sharma, N. Abinnas, E. Durgadevi, P. Raji, S. Ponnusamy, C. Muthamizhchelvan, Y. Hayakawa, and D.Y. Kim: Fabrication of the flexible nanogenerator from BTO nanopowders on graphene coated PMMA substrates by sol–gel method. Mater. Chem. Phys.192, 274–281 (2017).
M.S. Tsai, S.C. Sun, and T.Y. Tseng: Effect of oxygen to argon ratio on properties of (Ba,Sr)TiO3 thin films prepared by radio-frequency magnetron sputtering. J. Appl. Phys.82, 3482–3487 (1997).
M. Shen, Z. Dong, Z. Gan, and S. Ge: Oxygen-related dielectric relaxation and leakage characteristics of Pt/(Ba,Sr)TiO3/Pt thin-film capacitors. Appl. Phys. Lett.80, 2538–2540 (2002).
C.H. Park and D.J. Chadi: Microscopic study of oxygen-vacancy defects in ferroelectric perovskites. Phys. Rev. B57, 961–964 (1998).
S. Ezhilvalavan and T-Y. Tseng: Progress in the developments of (Ba,Sr)TiO3(BST) thin films for Gigabit era DRAMs. Mater. Chem. Phys.65, 227–248 (2000).
J.X. Liao, C.R. Yang, Z. Tian, H.G. Yang, and L. Jin: The influence of post-annealing on the chemical structures and dielectric properties of the surface layer of Ba0.6Sr0.4TiO3 films. J. Phys. D: Appl. Phys.39, 2473 (2006).
M. Es-Souni, N. Zhang, S. Iakovlev, C-H. Solterbeck, and A. Piorra: Thickness and erbium doping effects on the electrical properties of lead zirconate titanate thin films. Thin Solid Films440, 26–34 (2003).
J.C. Shin, C.S. Hwang, H.J. Kim, and S.O. Park: Leakage current of sol–gel derived Pb(Zr,Ti)O3 thin films having Pt electrodes. Appl. Phys. Lett.75, 3411 (1999).
X.Z. MinWang, W. Li, G. Cao, and A. Xiang: Enhanced dielectric performance of BaxSr(1‒x)TiO3 films prepared by the direct current micro-arc oxidation in the presence of ethylenediamine tetraacetic acid. Thin Solid Films694, 137579 (2020).
Z. Saroukhani, N. Tahmasebi, S.M. Mahdavi, and N. Ali: Effect of working pressure and annealing temperature on microstructure and surface chemical composition of barium strontium titanate films grown by pulsed laser deposition. Bull. Mater. Sci.38, 1645–1650 (2015).
Acknowledgments
This study was supported by the Science and Technology Planning Project of Guangdong Province (No. 2016A010103040) and the Educational Commission of Guangdong Province (No. 2015KTSCX084).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, M., Zuo, X., Li, K. et al. Growth characteristics of BaxSr(1−x)TiO3 thin films produced by micro-arc oxidation. Journal of Materials Research 35, 1703–1714 (2020). https://doi.org/10.1557/jmr.2020.66
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2020.66