Skip to main content
Log in

Characterization of structural transformation of graphene oxide to reduced graphene oxide during thermal annealing

  • 2D and Nanomaterials
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Graphene enticed the scientific community for its interesting properties since its discovery. Among different synthesis routes of graphene, reduction of graphene oxide (GO) is mostly preferred because of scalability and advantage of modulation of properties of the end product. Thermal reduction of GO is considered to be the simplest and economic among different reduction techniques. The current work reports an experimental analysis of the structural evolution of GO to reduced graphene oxide (rGO) during thermal treatment. GO has been thermally annealed at an optimized temperature of 350 °C in ambient. Thermal reduction is observed after 7 min of annealing and confirmed by shifting of the first major peak from 12° to 23° in X-ray diffraction pattern. Significant carbon content enrichment and exfoliation are two aspects of the thermal reduction of GO. Carbon content suddenly enriches from 38 wt% in GO to 77 wt%. Exfoliation is confirmed by morphological alterations and decrease in carbon layers from eleven to three.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. A.K. Geim and K.S. Novoselov: The rise of graphene. Nat. Mater. 6, 183 (2007).

    Article  CAS  Google Scholar 

  2. C. Berger, W. Xu, N. Brown, C. Naud, X. Li, Z. Song, D. Mayou, T. Li, J. Hass, A. Marchenkov, E.H. Conrad, P.N. First, W.A. De Heer: Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191 (2006).

    Article  CAS  Google Scholar 

  3. R.B. Patel, C. Yu, T. Chou, and Z. Iqbal: Novel synthesis route to graphene using iron nanoparticles. J. Mater. Res. 29, 1522 (2014).

    Article  CAS  Google Scholar 

  4. E.P. Randviir, D.A.C. Brownson, and C.E. Banks: A decade of graphene research: Production, applications and outlook. Mater. Today 17, 426 (2014).

    Article  CAS  Google Scholar 

  5. S. Pei and H.M. Cheng: The reduction of graphene oxide. Carbon 50, 3210 (2012).

    Article  CAS  Google Scholar 

  6. Y. Si and E.T. Samulski: Synthesis of water soluble graphene. Nano Lett. 8, 1679 (2008).

    Article  CAS  Google Scholar 

  7. H.J. Shin, K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.S. Jung, M.H. Jin, H.K. Jeong, J.M. Kim, J.Y. Choi, and Y.H. Lee: Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 19, 1987 (2009).

    Article  CAS  Google Scholar 

  8. M.J. Fernández-Merino, L. Guardia, J.I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, and J.M.D. Tascón: Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J. Phys. Chem. C 114, 6426 (2010).

    Article  CAS  Google Scholar 

  9. H. Guo, X-F. Wang, Q. Qian, F. Wang, and X. Xia: A green approach to the synthesis of graphene nanosheets. ACS Nano 3, 2653 (2009).

    Article  CAS  Google Scholar 

  10. A. Romero, M.P. Lavin-Lopez, L. Sanchez-Silva, J.L. Valverde, and A. Paton-Carrero: Comparative study of different scalable routes to synthesize graphene oxide and reduced graphene oxide. Mater. Chem. Phys. 203, 284 (2018).

    Article  CAS  Google Scholar 

  11. Y. Zhang and X. Wang: An improved process for the graphene preparation via redox potential control. J. Mater. Res. 34, 3212 (2019).

    Article  CAS  Google Scholar 

  12. A. Singh, N. Sharma, M. Arif, and R.S. Katiyar: Electrically reduced graphene oxide for photovoltaic application. J. Mater. Res. 34, 652 (2019).

    Article  CAS  Google Scholar 

  13. I. Sengupta, S. Chakraborty, M. Talukdar, S.K. Pal, and S. Chakraborty: Thermal reduction of graphene oxide: How temperature influences purity. J. Mater. Res. 33, 4113 (2018).

    Article  CAS  Google Scholar 

  14. D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, C.A. Ventrice, and R.S. Ruoff: Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 47, 145 (2009).

    Article  CAS  Google Scholar 

  15. S. Xu, Z. Zhang, J. Liu, Y. Wang, and J. Hu: Facile preparation of reduced graphene by optimizing oxidation condition and further reducing the exfoliated products. J. Mater. Res. 32, 383 (2017).

    Article  CAS  Google Scholar 

  16. X. Li, H. Wang, J.T. Robinson, H. Sanchez, and G. Diankov: Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc. 13, 15939 (2009).

    Article  CAS  Google Scholar 

  17. G.T.T. Le, J. Manyam, P. Opaprakasit, N. Chanlek, N. Grisdanurak, and P. Sreearunothai: Divergent mechanisms for thermal reduction of graphene oxide and their highly different ion affinities. Diam. Relat. Mater. 89, 246 (2018).

    Article  CAS  Google Scholar 

  18. A. Lerf, H. He, M. Forster, and J. Klinowski: Structure of graphite oxide revisited. J. Phys. Chem. B 102, 4477 (1998).

    Article  CAS  Google Scholar 

  19. T. Szabó, O. Berkesi, P. Forgó, K. Josepovits, Y. Sanakis, D. Petridis, and I. Dékány: Evolution of surface functional groups in a series of progressively oxidized graphite oxides evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 18, 2740 (2006).

    Article  CAS  Google Scholar 

  20. H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonson, D.H. Adamson, R.K. Prud’homme, R. Car, D.A. Seville, and I.A. Aksay: Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110, 8535 (2006).

    Article  CAS  Google Scholar 

  21. Y. Qiu, F. Guo, R. Hurt, and I. Külaots: Explosive thermal reduction of graphene oxide-based materials: Mechanism and safety implications. Carbon 72, 215 (2014).

    Article  CAS  Google Scholar 

  22. P.V. Kumar, N.M. Bardhan, G.Y. Chen, Z. Li, A.M. Belcher, and J.C. Grossman: New insights into the thermal reduction of graphene oxide: Impact of oxygen clustering. Carbon 100, 90 (2016).

    Article  CAS  Google Scholar 

  23. X. Gao, J. Jang, and S. Nagase: Hydrazine and thermal reduction of graphene oxide: Reaction mechanisms and design. J. Phys. Chem. C 114, 832 (2010).

    Article  CAS  Google Scholar 

  24. Y. Qiu, S. Moore, R. Hurt, and I. Külaots: Influence of external heating rate on the structure and porosity of thermally exfoliated graphite oxide. Carbon 111, 651 (2017).

    Article  CAS  Google Scholar 

  25. T.D. Dao and H.M. Jeong: Graphene prepared by thermal reduction—Exfoliation of graphite oxide: Effect of raw graphite particle size on the properties of graphite oxide and graphene. Mater. Res. Bull. 70, 651 (2015).

    Article  CAS  Google Scholar 

  26. M. Qian, C. Xu, and Y. Gao: Open-air combustion synthesis of three-dimensional graphene for oil absorption and energy storage. Mater. Sci. Eng., B 238–239, 149 (2018).

    Article  CAS  Google Scholar 

  27. S.B. Singh and M. De: Thermally exfoliated graphene oxide for hydrogen storage. Mater. Chem. Phys. 239, 122102 (2020).

    Article  CAS  Google Scholar 

  28. G. Lu, L.E. Ocola, and J. Chen: Gas detection using low-temperature reduced graphene oxide sheets. Appl. Phys. Lett. 94, 2 (2009).

    Google Scholar 

  29. Y. Wang, Y. Chen, S.D. Lacey, L. Xu, H. Xie, T. Li, V.A. Danner, and L. Hu: Reduced graphene oxide film with record-high conductivity and mobility. Mater. Today 21, 186 (2018).

    Article  CAS  Google Scholar 

  30. K. Chen and D. Xue: From graphite-clay composites to graphene electrode materials: In situ electrochemical oxidation and functionalization. Mater. Res. Bull. 96, 281 (2017).

    Article  CAS  Google Scholar 

  31. Y-R. Chen, K-F. Chiu, H.C. Lin, C-Y. Hsieh, C.B. Tsai, and B.T.T. Chu: The effect of dispersion status with functionalized graphenes for electric double-layer capacitors. Mater. Sci. Eng., B 190, 59 (2014).

    Article  CAS  Google Scholar 

  32. S. Bandi, V. Hastak, C.L.P. Pavithra, S. Kashyap, D.K. Singh, S. Luqman, D.R. Peshwe, and A.K. Srivastav: Graphene/chitosan-functionalized iron oxide nanoparticles for biomedical applications. J. Mater. Res. 34, 3389 (2019).

    Article  CAS  Google Scholar 

  33. I. Sengupta, P. Bhattacharya, M. Talukdar, S. Neogi, S.K. Pal, and S. Chakraborty: Bactericidal effect of graphene oxide and reduced graphene oxide: Influence of shape of bacteria. Colloid Interface Sci. Commun. 28, 60 (2019).

    Article  CAS  Google Scholar 

  34. M. Fathy, A. Gomaa, F.A. Taher, M.M. El-Fass, and A.E.H.B. Kashyout: Optimizing the preparation parameters of GO and rGO for large-scale production. J. Mater. Sci. 51, 5664 (2016).

    Article  CAS  Google Scholar 

  35. S. Azizighannad and S. Mitra: Stepwise reduction of graphene oxide (GO) and its effects on chemical and colloidal properties. Sci. Rep. 8, 10083 (2018).

    Article  CAS  Google Scholar 

  36. H. Huang, K. De Silva, G.R.A. Kumara, and M. Yoshimura: Structural evolution of hydrothermally derived reduced graphene oxide. Sci. Rep. 8, 6849 (2018).

    Article  CAS  Google Scholar 

  37. K.K.H. De Silva, H.H. Huang, and M. Yoshimura: Progress of reduction of graphene oxide by ascorbic acid. Appl. Surf. Sci. 447, 338 (2018).

    Article  CAS  Google Scholar 

  38. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, and J.M. Tour: Improved synthesis of graphene oxide. ACS Nano 4, 4806 (2010).

    Article  CAS  Google Scholar 

  39. C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Carfunkel, and M. Chhowalla: Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 19, 2577 (2009).

    Article  CAS  Google Scholar 

  40. Y. Qiu, F. Collin, R.H. Hurt, and I. Külaots: Thermochemistry and kinetics of graphite oxide exothermic decomposition for safety in large-scale storage and processing. Carbon 96, 20 (2016).

    Article  CAS  Google Scholar 

  41. H. Yu, B. Zhang, C. Bulin, R. Li, and R. Xing: High-efficient synthesis of graphene oxide based on improved hummers method. Sci. Rep. 6, 36143 (2016).

    Article  CAS  Google Scholar 

  42. T.A. Saleh, M.M. Al-Shalalfeh, and A.A. Al-Saadi: Silver loaded graphene as a substrate for sensing 2-thiouracil using surface-enhanced Raman scattering. Sens. Actuators, B 254, 1110 (2018).

    Article  CAS  Google Scholar 

  43. A. Jorio, E.H.M. Ferreira, M.V.O. Moutinho, F. Stavale, C.A. Achete, and R.B. Capaz: Measuring disorder in graphene with the G and D bands. Phys. Status Solidi B 247, 2980 (2010).

    Article  CAS  Google Scholar 

  44. P.T. Araujo, M. Terrones, and M.S. Dresselhaus: Defects and impurities in graphene-like materials. Mater. Today 15, 98 (2012).

    Article  CAS  Google Scholar 

  45. A. Eftekhari and H. Garcia: The necessity of structural irregularities for the chemical applications of graphene. Mater. Today Chem. 4, 1 (2017).

    Article  Google Scholar 

  46. M.P. Lavin-Lopez, A. Paton-Carrero, L. Sanchez-Silva, J.L. Valverde, and A. Romero: Influence of the reduction strategy in the synthesis of reduced graphene oxide. Adv. Powder Technol. 28, 3195 (2017).

    Article  CAS  Google Scholar 

  47. C.K. Chua and M. Pumera: Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chem. Soc. Rev. 43, 291 (2014).

    Article  CAS  Google Scholar 

  48. M.T.H. Aunkor, I.M. Mahbubul, R. Saidur, and H.S.C. Metselaar: Deoxygenation of graphene oxide using household baking soda as a reducing agent: A green approach. RSC Adv. 5, 70461 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudipto Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sengupta, I., Kumar, S.S.S.S., Pal, S.K. et al. Characterization of structural transformation of graphene oxide to reduced graphene oxide during thermal annealing. Journal of Materials Research 35, 1197–1204 (2020). https://doi.org/10.1557/jmr.2020.55

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.55

Navigation