Skip to main content
Log in

Honey and curcumin loaded multilayered polyvinylalcohol/cellulose acetate electrospun nanofibrous mat for wound healing

  • Biomedical Materials, Regenerative Medicine and Drug Delivery
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Bioactive dressings which can treat any kind of chronic or acute wounds and can fully replace the conventional gauzes and superabsorbent dressings have proven to be a future market of wound care products in recent times. These dressings are multifunctional, which can effectively combat the wound infection, remove the exudate, promote angiogenesis, and protect the wound from external trauma. Proper selection of bioactive and polymer defines its efficiency. Current research unveils the therapeutic efficacy of curcumin–honey-loaded multilayered polyvinyl alcohol/cellulose acetate electrospun nanofibrous mats as an interactive bioactive wound dressing material. Scanning electron microscopy and Fourier transform infrared spectroscopy analysis infers uniform encapsulation and chemical compatibility of herbal actives and polymer, inside the nanofibrous layers. The as-spun mat shows potential resistance towards Escherichia coli and ∼90% antioxidant activity against diphenyl-picrylhydrazyl (DPPH)–free radical. Additionally, water absorbency, water vapor transmission rate, and wettability analysis show quick and excellent absorption with controlled transmission of wound exudate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. T. Wild, A. Rahbarnia, M. Kellner, L. Sobotka, and T. Eberlein: Basics in nutrition and wound healing. Nutrition 26, 862 (2010).

    Article  Google Scholar 

  2. M. Amir Qureshi, F. Khatoon, and S. Ahmed: An overview on wounds their issues and natural remedies for wound healing. Biochem. Physiol.: Open Access 4, 1 (2015).

    Article  CAS  Google Scholar 

  3. L. Preem and K. Kogermann: Recent Clinical Techniques, Results, and Research in Wounds (Springer, Switzerland AG 2018); pp. 1–44.

    Google Scholar 

  4. J. Boateng and O. Catanzano: Advanced therapeutic dressings for effective wound healing—A review. J. Pharm. Sci. 104, 3653 (2015).

    Article  CAS  Google Scholar 

  5. P. Zahedi, I. Rezaeian, S.O. Ranaei-Siadat, S.H. Jafari, and P. Supaphol: A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym. Adv. Technol. 21, 77 (2010).

    Article  CAS  Google Scholar 

  6. Y. Pilehvar-Soltanahmadi, A. Akbarzadeh, N. Moazzez-Lalaklo, and N. Zarghami: An update on clinical applications of electrospun nanofibers for skin bioengineering. Artif. Cells, Nanomed., Biotechnol. 44, 1 (2015).

    Google Scholar 

  7. W. Zhong, M.M.Q. Xing, and H.I. Maibach: Nanofibrous materials for wound care. Cutaneous Ocul. Toxicol. 29, 143 (2010).

    Article  CAS  Google Scholar 

  8. V. Andreu, G. Mendoza, M. Arruebo, and S. Irusta: Smart dressings based on nanostructured fibers containing natural origin antimicrobial, anti-inflammatory, and regenerative compounds. Materials 8, 5154 (2015).

    Article  Google Scholar 

  9. S.S. Said, A.K. Aloufy, O.M. El-Halfawy, N.A. Boraei, and L.K. El-Khordagui: Antimicrobial PLGA ultrafine fibers: Interaction with wound bacteria. Eur. J. Pharm. Biopharm. 79, 108 (2011).

    Article  CAS  Google Scholar 

  10. J. Sjollema, S.A.J. Zaat, V. Fontaine, M. Ramstedt, R. Luginbuehl, K. Thevissen, J. Li, H.C. van der Mei, and H.J. Busscher: In vitro methods for the evaluation of antimicrobial surface designs. Acta Biomater. 70, 12 (2018).

    Article  CAS  Google Scholar 

  11. Y. Cao, S. Jana, L. Bowen, X. Tan, H. Liu, N. Rostami, J. Brown, N.S. Jakubovics, and J. Chen: Hierarchical rose petal surfaces delay the early-stage bacterial biofilm growth. Langmuir 35, 14670 (2019).

    Article  CAS  Google Scholar 

  12. Y. Wang, T. Wei, Y. Qu, Y. Zhou, Y. Zheng, C. Huang, Y. Zhang, Q. Yu, and H. Chen: Smart, photothermally activated, antibacterial surfaces with thermally triggered bacteria-releasing properties. ACS Appl. Mater. Interfaces (2019).

  13. A.G. Kanani and S.H. Bahrami: Review on electrospun nanofibres scaffold and biomedical applications. Trends Biomater. Artif. Organs 24, 93 (2010).

    Google Scholar 

  14. D.H. Reneker, A.L. Yarin, E. Zussman, and H. Xu: Electrospinning of nanofibers from polymer solutions and melts. Adv. Appl. Mech. 41, 43 (2007).

    Article  Google Scholar 

  15. S. Ramakrishna, K. Fujihara, W.E. Teo, Z. Ma, and T.C. Lim: Electrospinning and Nanofibers (World Scientific Publishing, Singapore, 2005).

    Book  Google Scholar 

  16. J. Doshi and D.H. Reneker: Electrospinning process and applications of electrospun fibers. In Conference Record 1993 IEEE Industry Applications Society Annual Meeting, Vol. 3 Institute of Electrical and Electronics Engineers (New Jersey, US, 1993); p. 1698.

    Google Scholar 

  17. B. Motealleh, P. Zahedi, I. Rezaeian, M. Moghimi, A. Hossein, and M.A. Zarandi: Morphology, drug release, antibacterial, cell proliferation, and histology studies of chamomile-loaded wound dressing mats based on electrospun nanofibrous poly(E-caprolactone)/polystyrene blends. J. Biomed. Mater. Res., Part B 102, 977 (2014).

    Article  CAS  Google Scholar 

  18. H. Maleki, A.A. Gharehaghaji, and P.J. Dijkstra: A novel honey-based nanofibrous scaffold for wound dressing application. J. Appl. Polym. Sci. 127, 4086 (2013).

    Article  CAS  Google Scholar 

  19. W.A. Sarhan and H.M.E. Azzazy: High concentration honey chitosan electrospun nanofibers: Biocompatibility and antibacterial effects. Carbohydr. Polym. 122, 135 (2015).

    Article  CAS  Google Scholar 

  20. R. Jenkins, M. Wootton, R. Howe, and R. Cooper: A demonstration of the susceptibility of clinical isolates obtained from cystic fibrosis patients to manuka honey. Arch. Microbiol. 197, 597 (2015).

    Article  CAS  Google Scholar 

  21. P.H.S. Kwakman and S.A.J. Zaat: Antibacterial components of honey. IUBMB Life 64, 48 (2012).

    Article  CAS  Google Scholar 

  22. X.Z. Sun, G.R. Williams, X.X. Hou, and L.M. Zhu: Electrospun curcumin-loaded fibers with potential biomedical applications. Carbohydr. Polym. 94, 147 (2013).

    Article  CAS  Google Scholar 

  23. O. Suwantong, P. Opanasopit, U. Ruktanonchai, and P. Supaphol: Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance. Polymer 48, 7546 (2007).

    Article  CAS  Google Scholar 

  24. E. Mancuso, C. Tonda-Turo, C. Ceresa, V. Pensabene, S.D. Connell, L. Fracchia, and P. Gentile: Potential of manuka honey as a natural polyelectrolyte to develop biomimetic nanostructured meshes with antimicrobial properties. Front. Bioeng. Biotechnol. 7, 1 (2019).

    Article  Google Scholar 

  25. C.T. Rueden, J. Schindelin, M.C. Hiner, B.E. DeZonia, A.E. Walter, E.T. Arena, and K.W. Eliceiri: ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinf. 18, 529 (2017).

    Article  Google Scholar 

  26. T.M. Kolev, E.A. Velcheva, B.A. Stamboliyska, and M. Spiteller: DFT and experimental studies of the structure and vibrational spectra of curcumin. Int. J. Quantum Chem. 102, 1069 (2005).

    Article  CAS  Google Scholar 

  27. P.R.K. Mohan, G. Sreelakshmi, C.V. Muraleedharan, and R. Joseph: Water soluble complexes of curcumin with cyclodextrins: Characterization by FT-Raman spectroscopy. Vib. Spectrosc. 62, 77 (2012).

    Article  CAS  Google Scholar 

  28. O. Anjos, M.G. Campos, P.C. Ruiz, and P. Antunes: Application of FTIR-ATR spectroscopy to the quantification of sugar in honey. Food Chem. 169, 218 (2015).

    Article  CAS  Google Scholar 

  29. H.S. Mansur, C.M. Sadahira, A.N. Souza, and A.A.P. Mansur: FTIR spectroscopy characterization of poly(vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater. Sci. Eng. C 28, 539 (2008).

    Article  CAS  Google Scholar 

  30. Z. Khatri, R.A. Arain, A.W. Jatoi, G. Mayakrishnan, K. Wei, and I.S. Kim: Dyeing and characterization of cellulose nanofibers to improve color yields by dual padding method. Cellulose 20, 1469 (2013).

    Article  CAS  Google Scholar 

  31. UCLA college chemistry & biochemistry: IR table (2001). Available at: https://www.chem.ucla.edu/∼bacher/General/30BL/IR/ir.html (accessed November 13, 2019).

  32. S. Adepu, M.K. Gaydhane, M. Kakunuri, C.S. Sharma, M. Khandelwal, and S.J. Eichhorn: Effect of micropatterning induced surface hydrophobicity on drug release from electrospun cellulose acetate nanofibers. Appl. Surf. Sci. 426, 755 (2017).

    Article  CAS  Google Scholar 

  33. M. Nosonovsky: Model for solid-liquid and solid-solid friction of rough surfaces with adhesion hysteresis. J. Chem. Phys. 126, 224701 (2007).

    Article  CAS  Google Scholar 

  34. A. Lafuma and D. Quéré: Superhydrophobic states. Nat. Mater. 2, 457 (2003).

    Article  CAS  Google Scholar 

  35. S.T. Yohe, Y.L. Colson, and M.W. Grinstaff: Superhydrophobic materials for tunable drug release: Using displacement of air to control delivery rates. J. Am. Chem. Soc. 134, 2016 (2012).

    Article  CAS  Google Scholar 

  36. S.M. Saeed, H. Mirzadeh, M. Zandi, and J. Barzin: Designing and fabrication of curcumin loaded PCL/PVA multi-layer nanofibrous electrospun structures as active wound dressing. Prog. Biomater. 6, 39 (2017).

    Article  CAS  Google Scholar 

  37. P. Zahedi, Z. Karami, I. Rezaeian, S. Jafari, P. Mahdaviani, A.H. Abdolghaffari, and M. Abdollahi: Preparation and performance evaluation of tetracycline hydrochloride loaded wound dressing mats based on electrospun nanofibrous poly(lactic acid)/poly(ε-caprolactone) blends. J. Appl. Polym. Sci. 124, 4174 (2011).

    Article  CAS  Google Scholar 

  38. M. Valko, D. Leibfritz, J. Moncol, M.T.D. Cronin, M. Mazur, and J. Telser: Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39, 44 (2007).

    Article  CAS  Google Scholar 

  39. V. Lobo, A. Patil, A. Phatak, and N. Chandra: Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 4, 118 (2010).

    Article  CAS  Google Scholar 

  40. N.M. George and K.F. Cutting: Antibacterial honey (Medihoney™): In vitro activity against clinical isolates of MRSA, VRE, and other multiresistant gram-negative organisms including Pseudomonas aeruginosa. Wounds 19, 231–236 (2007).

    Google Scholar 

  41. L. Estevinho, A.P. Pereira, L. Moreira, L.G. Dias, and E. Pereira: Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey. Food Chem. Toxicol. 46, 3774 (2008).

    Article  CAS  Google Scholar 

  42. R. Jenkins and R. Cooper: Improving antibiotic activity against wound pathogens with manuka honey in vitro. PLoS One 7, e45600 (2012).

    Article  CAS  Google Scholar 

  43. R.F. El-Kased, R.I. Amer, D. Attia, and M.M. Elmazar: Honey-based hydrogel: In vitro and comparative in vivo evaluation for burn wound healing. Sci. Rep. 7, 1 (2017).

    Article  Google Scholar 

  44. H. Korkela and T.J. Pekkanen: The testing of the antibiotic sensitivity of bacteria on an agar medium: The problem of a double zone of inhibition. Acta Pathol. Microbiol. Scand., Sect. B: Microbiol. 85, 174 (1977).

    CAS  Google Scholar 

  45. B. Behera, D. Yadav, and M.C. Sharma: Antimicrobial assay of methanolic extract of holoptelea integrifolia bark (CHIRBILWA). Res. & Rev.: J. Microbiol. Biotechnol. 2, 8 (2013).

    Google Scholar 

  46. W.A. Sarhan, H.M.E. Azzazy, and I.M. El-Sherbiny: Honey/chitosan nanofiber wound dressing enriched with allium sativum and cleome droserifolia: Enhanced antimicrobial and wound healing activity. ACS Appl. Mater. Interfaces 8, 6379 (2016).

    Article  CAS  Google Scholar 

  47. Y. Tang, X. Lan, C. Liang, Z. Zhong, R. Xie, Y. Zhou, X. Miao, H. Wang, and W. Wang: Honey loaded alginate/PVA nanofibrous membrane as potential bioactive wound dressing. Carbohydr. Polym. 219, 113 (2019).

    Article  CAS  Google Scholar 

  48. X. Yang, L. Fan, L. Ma, Y. Wang, S. Lin, F. Yu, X. Pan, G. Luo, D. Zhang, and H. Wang: Green electrospun manuka honey/silk fibroin fibrous matrices as potential wound dressing. Mater. Des. 119, 76 (2017).

    Article  CAS  Google Scholar 

  49. O. Suwantong, P. Pankongadisak, S. Deachathai, and P. Supaphol: Electrospun poly(L-lactic acid) fiber mats containing crude garcinia mangostana extracts for use as wound dressings. Polym. Bull. 71, 925 (2014).

    Article  CAS  Google Scholar 

  50. S.E. Kim, D.N. Heo, J.B. Lee, J.R. Kim, S.H. Park, S.H. Jeon, and I.K. Kwon: Electrospun gelatin/polyurethane blended nanofibers for wound healing. Biomed. Mater. 4, 044106 (2009).

    Article  CAS  Google Scholar 

  51. S. Adepu and M. Khandelwal: Broad-spectrum antimicrobial activity of bacterial cellulose silver nanocomposites with sustained release. J. Mater. Sci. 53, 1596 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Dr. Mudrika Khandelwal for providing us the facility to carry out the antimicrobial testing. CSS acknowledges DST INSPIRE Faculty grant for partial financial support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrunalini K. Gaydhane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaydhane, M.K., Kanuganti, J.S. & Sharma, C.S. Honey and curcumin loaded multilayered polyvinylalcohol/cellulose acetate electrospun nanofibrous mat for wound healing. Journal of Materials Research 35, 600–609 (2020). https://doi.org/10.1557/jmr.2020.52

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.52

Navigation