Skip to main content
Log in

Nanoindentation-induced deformation, microfracture, and phase transformation in crystalline materials investigated in situ by acoustic emission

  • Nanomechanics and Testing
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

With the ever-increasing importance of nanoscale deformation phenomena in contemporary technologies, basic understanding of material behavior at the nanoscale has become of critical importance. Especially, nanomechanical testing that provides the capability to study fundamental nanoscale deformation and phase change phenomena in real time and under controlled loading conditions is essential for nanomaterial research. In this study, acoustic emission (AE) was used in situ to characterize nanoindentation-induced deformation, microfracture, and phase transformation processes intrinsic of bulk single-crystal MgO and polycrystalline Al, thin films of polycrystalline SiC, and thick films of austenitic TiNi shape-memory alloy. Scale-dependent plastic deformation and microfracture affected by the indenter tip radius and the applied normal load are interpreted in terms of the type and intensity of AE events revealed by abrupt displacement excursions in the loading response of the indented materials. The amplitudes of AE waveforms are used to examine characteristic deformation, microfracture, and phase change mechanisms in the time domain. Fast Fourier transformation and short-time Fourier transformation analyses provide further insight into the material behavior and structural changes due to indentation loading in the frequency and time-frequency domain, respectively. The methodology developed in this study represents an effective approach for nanomechanical testing and in situ characterization of nanoscale deformation, microfracture, and phase transformation phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Y-T. Cheng, T. Page, G.M. Pharr, M.V. Swain, and K.J. Wahl: Fundamentals and applications of instrumented indentation in multidisciplinary research. J. Mater. Res. 19, 1 (2004).

    Article  CAS  Google Scholar 

  2. T.F. Page, W.C. Oliver, and C.J. McHargue: The deformation behavior of ceramic crystals subjected to very low load (nano)indentations. J. Mater. Res. 7, 450 (1992).

    Article  CAS  Google Scholar 

  3. C. Tromas, J.C. Girard, V. Audurier, and J. Woirgard: Study of the low stress plasticity in single-crystal MgO nanoindentation and atomic force microscopy. J. Mater. Sci. 34, 5337 (1999).

    Article  CAS  Google Scholar 

  4. A. Kailer, Y.G. Gogotsi, and K.G. Nickel: Phase transformations of silicon caused by contact loading. J. Appl. Phys. 81, 3057 (1997).

    Article  CAS  Google Scholar 

  5. R.A. Fleming and M. Zou: The effects of confined core volume on the mechanical behavior of Al/a-Si core–shell nanostructures. Acta Mater. 128, 149 (2017).

    Article  CAS  Google Scholar 

  6. J.S. Field, M.V. Swain, and R.D. Dukino: Determination of fracture toughness from the extra penetration produced by indentation-induced pop-in. J. Mater. Res. 18, 1412 (2003).

    Article  CAS  Google Scholar 

  7. E.G. Berasategui and T.F. Page: The contact response of thin SiC-coated silicon systems—Characterisation by nanoindentation. Surf. Coat. Technol. 163–164, 491 (2003).

    Article  Google Scholar 

  8. J. Zhou, K. Komvopoulos, and A.M. Minor: Nanoscale plastic deformation and fracture of polymers studied by in situ nanoindentation in a transmission electron microscope. Appl. Phys. Lett. 88, 181908 (2006).

    Article  Google Scholar 

  9. P. Dyjak and R.P. Singh: Acoustic emission analysis of nanoindentation-induced fracture events. Exp. Mech. 46, 333 (2006).

    Article  Google Scholar 

  10. V. Domnich, Y. Gogotsi, and S. Dub: Effect of phase transformations on the shape of the unloading curve in the nanoindentation of silicon. Appl. Phys. Lett. 76, 2214 (2000).

    Article  CAS  Google Scholar 

  11. G. Behrens, G.W. Dransmann, and A.H. Heuer: On the isothermal martensitic transformation in 3Y-TZP. J. Am. Ceram. Soc. 76, 1025 (1993).

    Article  CAS  Google Scholar 

  12. A. Kailer, K.G. Nickel, and Y.G. Gogotsi: Raman microspectroscopy of nanocrystalline and amorphous phases in hardness indentations. J. Raman Spectrosc. 30, 939 (1999).

    Article  CAS  Google Scholar 

  13. X-G. Ma and K. Komvopoulos: Nanoscale pseudoelastic behavior of indented titanium-nickel films. Appl. Phys. Lett. 84, 3773 (2003).

    Article  Google Scholar 

  14. Z.C. Li, L. Liu, X. Wu, L.L. He, and Y.B. Xu: Indentation induced amorphization in gallium arsenide. Mater. Sci. Eng. A 337, 21 (2002).

    Article  Google Scholar 

  15. B-G. Yoo, I-C. Choi, Y-J. Kim, J-Y. Suh, U. Ramamurty, and J-i. Jang: Further evidence for room temperature, indentation-induced nanocrystallization in a bulk metallic glass. Mater. Sci. Eng. A 545, 225 (2012).

    Article  CAS  Google Scholar 

  16. J-J. Kim, Y. Choi, S. Suresh, and A.S. Argon: Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature. Science 295, 654 (2002).

    CAS  Google Scholar 

  17. A.M. Minor, J.W. Morris, Jr., and E.A. Stach: Quantitative in situ nanoindentation in an electron microscope. Appl. Phys. Lett. 79, 1625 (2001).

    Article  CAS  Google Scholar 

  18. K. Komvopoulos and X-G. Ma: Pseudoelasticity of martensitic titanium-nickel shape-memory films studied by in situ heating nanoindentation and transmission electron microscopy. Appl. Phys. Lett. 87, 263108 (2005).

    Article  Google Scholar 

  19. J.M. Carlyle: In-flight crack detection via acoustic emission. J. Acoust. Soc. Am. 68, S104 (1980).

    Article  Google Scholar 

  20. R.M. Koerner and A.E. Lord, Jr.: Application of acoustic emission in the geotechnical area. J. Acoust. Soc. Am. 64, S175 (1978).

    Article  Google Scholar 

  21. R.S. McWilliams, D.K. Spaulding, J.H. Eggert, P.M. Celliers, D.G. Hicks, R.F. Smith, G.W. Collins, and R. Jeanloz: Phase transformations and metallization of magnesium oxide at high pressure and temperature. Science 338, 1330 (2012).

    Article  CAS  Google Scholar 

  22. A.R. Oganov, M.J. Gillan, and G.D. Price: Ab initio lattice dynamics and structural stability of MgO. J. Chem. Phys. 118, 10174 (2003).

    Article  CAS  Google Scholar 

  23. D. Alfè, M. Alfredsson, J. Brodholt, M.J. Gillan, M.D. Towler, and R.J. Needs: Quantum Monte Carlo calculations of the structural properties and the B1–B2 phase transition of MgO. Phys. Rev. B 72, 014114 (2005).

    Article  Google Scholar 

  24. K.L. Johnson: Contact Mechanics (Cambridge University Press, Cambridge, U.K., 1985).

    Book  Google Scholar 

  25. N.I. Tymiak, A. Daugela, T.J. Wyrobek, and O.L. Warren: Highly localized acoustic emission monitoring of nanoscale indentation contacts. J. Mater. Res. 18, 784 (2003).

    Article  CAS  Google Scholar 

  26. S.G. Corcoran, R.J. Colton, E.T. Lilleodden, and W.W. Gerberich: Anomalous plastic deformation at surfaces: Nanoindentation of gold single crystals. Phys. Rev. B 55, R16057 (1997).

    Article  CAS  Google Scholar 

  27. D.F. Bahr, D.E. Kramer, and W.W. Gerberich: Non-linear deformation mechanisms during nanoindentation. Acta Mater. 46, 3605 (1998).

    Article  CAS  Google Scholar 

  28. E.A. Stach, T. Freeman, A.M. Minor, D.K. Owen, J. Cumings, M.A. Wall, T. Chraska, R. Hull, J.W. Morris, Jr., A. Zettl, and U. Dahmen: Development of a nanoindenter for in situ transmission electron microscopy. Microsc. Microanal. 7, 507 (2001).

    Article  CAS  Google Scholar 

  29. M. Shiwa, E.R. Weppelmann, A. Bendeli, M.V. Swain, D. Munz, and T. Kishi: Acoustic emission and precision force-displacement observations of spherical indentations into TiN films on silicon. Surf. Coat. Technol. 68–69, 598 (1994).

    Article  Google Scholar 

  30. X-G. Ma, K. Komvopoulos, and D.B. Bogy: Nanoindentation of polycrystalline silicon–carbide thin films studied by acoustic emission. Appl. Phys. Lett. 85, 1695 (2004).

    Article  CAS  Google Scholar 

  31. K. Sangwal, P. Gorostiza, J. Servat, and F. Sanz: Atomic force microscopy study of nanoindentation deformation and indentation size effect in MgO crystals. J. Mater. Res. 14, 3973 (1999).

    Article  CAS  Google Scholar 

  32. C.R. Stoldt, M.C. Fritz, C. Carraro, and R. Maboudian: Micromechanical properties of silicon-carbide thin films deposited using single-source chemical-vapor deposition. Appl. Phys. Lett. 79, 347 (2001).

    Article  CAS  Google Scholar 

  33. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  34. X-G. Ma and K. Komvopoulos: Pseudoelasticity of shape-memory titanium–nickel films subjected to dynamic nanoindentation. Appl. Phys. Lett. 84, 4274 (2004).

    Article  CAS  Google Scholar 

  35. X-G. Ma and K. Komvopoulos: In situ transmission electron microscopy and nanoindentation studies of phase transformation and pseudoelasticity of shape-memory titanium–nickel films. J. Mater. Res. 20, 1808 (2005).

    Article  CAS  Google Scholar 

  36. H-S. Zhang and K. Komvopoulos: Nanoscale pseudoelasticity of single-crystal Cu–Al–Ni shape-memory alloy induced by cyclic nanoindentation. J. Mater. Sci. 41, 5021 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyriakos Komvopoulos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, XG., Komvopoulos, K. Nanoindentation-induced deformation, microfracture, and phase transformation in crystalline materials investigated in situ by acoustic emission. Journal of Materials Research 35, 380–390 (2020). https://doi.org/10.1557/jmr.2020.5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.5

Navigation