Abstract
The computational tool integrating empirical tight binding and full configuration interaction method is utilized to study the structural and optical properties of spherical PbX (X = S, Se, and Te) nanocrystals under various diameters. The nanocrystal architecture plays an essential role in the control of the structural and optical properties. The appearance of the quantum confinement is caused by the reduction of the optical band gaps with the increasing diameters. By changing the chalcogenide types and diameters, the band gaps are modified, with their wavelengths from 380 to 2500 nm, technologically applying for the visible and near-infrared optical devices. The tight-binding band gaps agree well with previously published theoretical and experimental values. The atomistic electron–hole interactions are mainly influenced by the diameters and chalcogenide types. Using the Stokes shift and fine structure splitting, PbS nanocrystal with the immense size may be implemented as a source of entangled photon pairs and optical filter. Finally, the theoretical study reveals the distinctive properties of PbX (X = S, Se, and Te) nanocrystals by changing their architecture for applications in optoelectronic devices and microscopy.
Similar content being viewed by others
References
A.L. Rogach, A. Eychmüller, S.G. Hickey, and S.V. Kershaw: Infrared-emitting colloidal nanocrystals: Synthesis, assembly, spectroscopy, and applications. Small 3, 536 (2007).
M. Mozafari, F. Moztarzadeh, A. Seifalian, and L. Tayebi: Self-assembly of PbS hollow sphere quantum dots via gas-bubble technique for early cancer diagnosis. J. Lumin. 133, 188 (2013).
L.O. Cinteza: Quantum dots in biomedical applications: Advances and challenges. J. Nanophotonics 4, 042503 (2010).
K.P. Bhandari, P.J. Roland, H. Mahabaduge, N.O. Haugen, C.R. Grice, S. Jeong, T. Dykstra, J. Gao, and R.J. Ellingson: Thin film solar cells based on the heterojunction of colloidal PbS quantum dots with CdS. Sol. Energy Mater. Sol. Cells 117, 476 (2013).
S. Emin, S.P. Singh, L. Han, N. Satoh, and A. Islam: Colloidal quantum dot solar cells. Sol. Energy 85, 1264 (2011).
A.N. Jumabekov, F. Deschler, D. Bo, L.M. Peter, J. Feldmann, and T. Bein: Quantum-dot-sensitized solar cells with water-soluble and air-stable PbS quantum dots. J. Phys. Chem. C 118, 5142 (2014).
R.J. Ellingson, M.C. Beard, J.C. Johnson, P. Yu, O.I. Micic, A.J. Nozik, A. Shabaev, and A.L. Efros: Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 5, 865 (2005).
R.D. Schaller and V.I. Klimov: High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Phys. Rev. Lett. 92, 186601 (2004).
M.T. Trinh, A.J. Houtepen, J.M. Schins, T. Hanrath, J. Piris, W. Knulst, A.P.L.M. Goossens, and L.D.A. Siebbeles: In spite of recent doubts carrier multiplication does occur in PbSe nanocrystals. Nano Lett. 8, 1713 (2008).
M.C. Beard, A.G. Midgett, M. Law, O.E. Semonin, R.J. Ellingson, and A.J. Nozik: Variations in the quantum efficiency of multiple exciton generation for a series of chemically treated PbSe nanocrystal films. Nano Lett. 9, 836 (2009).
R.S. Kane, R.E. Cohen, and R. Silbey: Theoretical study of the electronic structure of PbS nanoclusters. J. Phys. Chem. 100, 7928 (1996).
M.A. Hines and G.D. Scholes: Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater. 15, 1844 (2003).
A.P. Litvin, P.S. Parfenov, E.V. Ushakova, A.L. Simões Gamboa, A.V. Fedorov, and A.V. Baranov: Size and temperature dependencies of the low-energy electronic structure of PbS quantum dots. J. Phys. Chem. C 118, 20721 (2014).
J. Zhang, R.W. Crisp, J. Gao, D.M. Kroupa, M.C. Beard, and J.M. Luther: Synthetic conditions for high-accuracy size control of PbS quantum dots. J. Phys. Chem. Lett. 6, 1830 (2015).
Y. Pan, Y.R. Li, Y. Zhao, and D.L. Akins: Synthesis and characterization of quantum dots: A case study using PbS. J. Chem. Educ. 92, 1860 (2015).
U. Kumar, S.N. Sharma, S. Singh, M. Kar, V.N. Singh, B.R. Mehta, and R. Kakkar: Size- and shape-controlled synthesis and properties of colloidal PbSe nanocrystals. Mater. Chem. Phys. 113, 107 (2009).
I. Kang and F.W. Wise: Electronic structure and optical properties of PbS and PbSe quantum dots. J. Opt. Soc. Am. B 14, 1632 (1997).
R. Koole, G. Allan, C. Delerue, A. Meijerink, D. Vanmaekelbergh, and A.J. Houtepen: Optical investigation of quantum confinement in PbSe nanocrystals at different points in the brillouin zone. Small 4, 127 (2008).
R. Leitsmann and F. Bechstedt: Characteristic energies and shifts in optical spectra of colloidal IV–VI semiconductor nanocrystals. ACS Nano 3, 3505 (2009).
T. Mokari, M. Zhang, and P. Yang: Shape, size, and assembly control of PbTe nanocrystals. J. Am. Chem. Soc. 129, 9864 (2007).
J.E. Murphy, M.C. Beard, A.G. Norman, S.P. Ahrenkiel, J.C. Johnson, P. Yu, O.I. Mićić, R.J. Ellingson, and A.J. Nozik: PbTe colloidal nanocrystals: Synthesis, characterization, and multiple exciton generation. J. Am. Chem. Soc. 128, 3241 (2006).
B. Zhang, J. He, and T.M. Tritta: Size-selective high-yield growth of lead telluride (PbTe) nanocrystals using a chemical vapor deposition technique. Appl. Phys. Lett. 88, 043119 (2006).
M. Korkusinski and P. Hawrylak: Atomistic theory of emission from dark excitons in self-assembled quantum dots. Phys. Rev. B 87, 115310 (2013).
M. Zieliński: Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots. J. Phys.: Condens. Matter 25, 465301 (2013).
F.A. Reboredo, A. Franceschetti, and A. Zunger: Dark excitons due to direct Coulomb interactions in silicon quantum dots. Phys. Rev. B 61, 13073 (2000).
E.L. de Oliveira, E.L. Albuquerque, J.S. de Sousa, G.A. Farias, and F.M. Peeters: Configuration-interaction excitonic absorption in small Si/Ge and Ge/Si core/shell nanocrystals. J. Phys. Chem. C 116, 4399 (2012).
W. Sukkabot: Excitonic fine structure splitting in ZnTe/ZnX (X = S and Se) core/shell nanocrystals: Atomistic tight-binding theory. Superlattices Microstruct. 91, 208 (2016).
W. Sukkabot: Atomistic tight-binding computations of excitonic fine structure splitting in CdSe/ZnSe type-I and ZnSe/CdSe invert type-I core/shell nanocrystals. Mater. Sci. Semicond. Process. 47, 57 (2016).
W. Sukkabot: Atomistic tight-binding computations in structural and optical properties of CdSe/ZnSe/ZnS core/multi-shell nanocrystals. Superlattices Microstruct. 95, 71 (2016).
Y. Wang, A. Suna, W. Mahler, and R. Kasowski: PbS in polymers. From molecules to bulk solids. J. Chem. Phys. 87, 7315 (1987).
H. Weller: Quantized semiconductor particles: A novel state of matter for materials science. Adv. Mater. 5, 88 (1993).
J.M. An, A. Franceschetti, and A. Zunger: The excitonic exchange splitting and radiative lifetime in PbSe quantum dots. Nano Lett. 7, 2129 (2007).
P. Liljeroth, P.A. Zeijlmans van Emmichoven, S.G. Hickey, H. Weller, B. Grandidier, G. Allan, and D. Vanmaekelbergh: Density of states measured by scanning-tunneling spectroscopy sheds new light on the optical transitions in PbSe nanocrystals. Phys. Rev. Lett. 95, 086801 (2005).
C.B. Murray, S. Sun, W. Gaschler, H. Doyle, T.A. Betley, and C.R. Kagan: Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J. Res. Dev. 45, 47 (2001).
K. Gong, Y. Zeng, and D.F. Kelley: Extinction coefficients, oscillator strengths, and radiative lifetimes of CdSe, CdTe, and CdTe/CdSe nanocrystals. J. Phys. Chem. C 117, 20268 (2013).
J. Jasieniak, L. Smith, J. van Embden, P. Mulvaney, and M. Califano: Re-examination of the size-dependent absorption properties of CdSe quantum dots. J. Phys. Chem. C 113, 19468 (2009).
W. Sukkabot: Atomistic tight-binding calculations of near infrared emitting CdxHg1−xTe nanocrystals. Comput. Mater. Sci. 138, 166 (2017).
J. Butler: Advanced Topics in Forensic DNA Typing: Methodology, 1st ed. (Academic Press, San Diego, CA, 2011).
O. Benson, C. Santori, M. Pelton, and Y. Yamamoto: Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513 (2000).
M. Califano, A. Franceschetti, and A. Zunger: Lifetime and polarization of the radiative decay of excitons, biexcitons, and trions in CdSe nanocrystal quantum dots. Phys. Rev. B 75, 115401 (2007).
V.A. Fonoberov and A.A. Balandin: Radiative lifetime of excitons in ZnO nanocrystals: The dead-layer effect. Phys. Rev. B 70, 195410 (2004).
A. Kigel, M. Brumer, G. Maikov, A. Sashchiuk, and E. Lifshitz: The ground-state exciton lifetime of PbSe nanocrystal quantum dots. Superlattices Microstruct. 46, 272 (2009).
K.K. Zhuravlev, J.M. Pietryga, R.K. Sander, and R.D. Schaller: Optical properties of PbSe nanocrystal quantum dots under pressure. Appl. Phys. Lett. 90, 043110 (2007).
A.P. Alivisatos: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933 (1996).
S. Lee, F. Oyafuso, P. von Allmen, and G. Klimeck: Boundary conditions for the electronic structure of finite-extent embedded semiconductor nanostructures. Phys. Rev. B 69, 045316 (2004).
C.S. Lent, M.A. Bowen, J.D. Dow, R.S. Allgaier, O.F. Sankey, and E.S. Ho: Relativistic empirical tight-binding theory of the energy bands of GeTe, SnTe, PbTe, PbSe, PbS, and their alloys. Superlattices Microstruct. 2, 491 (1986).
W. Sheng, S-J. Cheng, and P. Hawrylak: Multiband theory of multi-exciton complexes in self-assembled quantum dots. Phys. Rev. B 71, 035316 (2005).
S. Lee, L. Jonsson, J.W. Wilkins, G.W. Bryant, and G. Klimeck: Electron–hole correlations in semiconductor quantum dots with tight-binding wave functions. Phys. Rev. B 63, 195318 (2001).
A. Franceschetti, H. Fu, L.W. Wang, and A. Zunger: Many-body pseudopotential theory of excitons in InP and CdSe quantum dots. Phys. Rev. B 60, 1819 (1999).
Acknowledgments
The author would like to acknowledge the support from Department of Physics, Faculty of Science, Ubon Ratchathani University, Thailand.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sukkabot, W. Atomistic tight-binding theory of structural and optical properties in PbX (X = S, Se, and Te) nanocrystals. Journal of Materials Research 35, 1190–1195 (2020). https://doi.org/10.1557/jmr.2020.46
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2020.46