Skip to main content
Log in

Layer-by-layer assembly of polymers and anisotropic nanomaterials using spray-based approach

  • Organic and Hybrid Functional Materials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Traditional dip-assisted layer-by-layer (LbL) assembly produces robust and conformal coatings, but it is time-consuming. Alternatively, spray-assisted layer-by-layer (SA-LbL) assembly has gained interest due to rapid processing resulting from the short adsorption time. However, it is challenging to assemble anisotropic nanomaterials using this spray-based approach. This is because the standard approach for fabricating “all-polyelectrolyte” LbL films does not necessarily give rise to satisfactory film growth when one of the adsorbing components is anisotropic. Here, polymers are combined with a model anisotropic nanomaterial via SA-LbL assembly. Specifically, graphene oxide (GO) is investigated, and the effect of anchor layer, colloidal stability, charge distribution along the carbon framework, and concentration of polymer on the growth and the film quality is examined to gain insight into how to achieve pinhole-free, smooth polymer/GO SA-LbL coatings. This approach might be applicable to other anisotropic nanomaterials such as clays or 2D nanomaterials for future development of uniform coatings by spraying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. G. Decher, J.D. Hong, and J. Schmitt: Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210–211, 831 (1992).

    Article  Google Scholar 

  2. G. Decher: Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 277, 1232 (1997).

    Article  CAS  Google Scholar 

  3. J.J. Richardson, M. Björnmalm, and F. Caruso: Technology-driven layer-by-layer assembly of nanofilms. Science 348, aaa2491 (2015).

    Article  CAS  Google Scholar 

  4. G. Nabar, M. Souva, K.H. Lee, S. De, J. Lutkenhaus, B. Wyslouzil, and J.O. Winter: High-throughput nanomanufacturing via spray processes. In Nanotechnology Commercialization Edited by T.O. Mensah, B. Wang, G. Bothun, J. Winter and V. Davis, (John Wiley & Sons, Inc., USA, 2017); p. 101.

    Chapter  Google Scholar 

  5. J-W. Jeon, S.R. Kwon, and J.L. Lutkenhaus: Polyaniline nanofiber/electrochemically reduced graphene oxide layer-by-layer electrodes for electrochemical energy storage. J. Mater. Chem. A. 3, 3757 (2015).

    Article  CAS  Google Scholar 

  6. T. Guin, M. Krecker, A. Milhorn, D.A. Hagen, B. Stevens, and J.C. Grunlan: Exceptional flame resistance and gas barrier with thick multilayer nanobrick wall thin films. Adv. Mater. Interfaces 2, 1500214 (2015).

    Article  CAS  Google Scholar 

  7. C.M. Andres, I. Larraza, T. Corrales, and N.A. Kotov: Nanocomposite microcontainers. Adv. Mater. 24, 4597 (2012).

    Article  CAS  Google Scholar 

  8. L. Escobar-Ferrand, D. Li, D. Lee, and C.J. Durning: All-nanoparticle layer-by-layer surface modification of micro-and ultrafiltration membranes. Langmuir 30, 5545 (2014).

    Article  CAS  Google Scholar 

  9. G.S. Lee, Y-J. Lee, and K.B. Yoon: Layer-by-layer assembly of zeolite crystals on glass with polyelectrolytes as ionic linkers. J. Am. Chem. Soc. 123, 9769 (2001).

    Article  CAS  Google Scholar 

  10. Y. Kang, L. Emdadi, M.J. Lee, D. Liu, and B. Mi: Layer-by-layer assembly of zeolite/polyelectrolyte nanocomposite membranes with high zeolite loading. Environ. Sci. Technol. Lett. 1, 504 (2014).

    Article  CAS  Google Scholar 

  11. S. De, M.I. Nandasiri, H.T. Schaef, B.P. McGrail, S.K. Nune, and J.L. Lutkenhaus: Water-based assembly of polymer–metal organic framework (MOF) functional coatings. Adv. Mater. Interfaces 4, 1600905 (2016).

    Article  CAS  Google Scholar 

  12. K.C. Krogman, J.L. Lowery, N.S. Zacharia, G.C. Rutledge, and P.T. Hammond: Spraying asymmetry into functional membranes layer-by-layer. Nat. Mater. 8, 512 (2009).

    Article  CAS  Google Scholar 

  13. T. Sasaki, Y. Ebina, T. Tanaka, M. Harada, M. Watanabe, and G. Decher: Layer-by-layer assembly of titania nanosheet/polycation composite films. Chem. Mater. 13, 4661 (2001).

    Article  CAS  Google Scholar 

  14. A. Qi, P. Chan, J. Ho, A. Rajapaksa, J. Friend, and L. Yeo: Template-free synthesis and encapsulation technique for layer-by-layer polymer nanocarrier fabrication. ACS Nano 5, 9583 (2011).

    Article  CAS  Google Scholar 

  15. J.L. Lutkenhaus, K.D. Hrabak, K. McEnnis, and P.T. Hammond: Elastomeric flexible free-standing hydrogen-bonded nanoscale assemblies. J. Am. Chem. Soc. 127, 17228 (2005).

    Article  CAS  Google Scholar 

  16. G.B. Sukhorukov, J. Schmitt, and G. Decher: Reversible swelling of polyanion/polycation multilayer films in solutions of different ionic strength. Bunsen-Ges. Phys. Chem., Ber. 100, 948 (1996).

    Article  CAS  Google Scholar 

  17. Y. Lvov, H. Haas, G. Decher, H. Moehwald, and A. Kalachev: Assembly of polyelectrolyte molecular films onto plasma-treated glass. J. Phys. Chem. 97, 12835 (1993).

    Article  CAS  Google Scholar 

  18. P. Lavalle, C. Gergely, F.J.G. Cuisinier, G. Decher, P. Schaaf, J.C. Voegel, and C. Picart: Comparison of the structure of polyelectrolyte multilayer films exhibiting a linear and an exponential growth regime: An in situ atomic force microscopy study. Macromolecules 35, 4458 (2002).

    Article  CAS  Google Scholar 

  19. A. Izquierdo, S.S. Ono, J.C. Voegel, P. Schaaf, and G. Decher: Dipping versus spraying: exploring the deposition conditions for speeding up layer-by-layer assembly. Langmuir 21, 7558 (2005).

    Article  CAS  Google Scholar 

  20. J. Zhu, H. Zhang, and N.A. Kotov: Thermodynamic and structural insights into nanocomposites engineering by comparing two materials assembly techniques for graphene. ACS Nano 7, 4818 (2013).

    Article  CAS  Google Scholar 

  21. R. Merindol, S. Diabang, O. Felix, T. Roland, C. Gauthier, and G. Decher: Bio-inspired multiproperty materials: Strong, self-healing, and transparent artificial wood nanostructures. ACS Nano 9, 1127 (2015).

    Article  CAS  Google Scholar 

  22. F. Xiang, D. Parviz, T.M. Givens, P. Tzeng, E.M. Davis, C.M. Stafford, M.J. Green, and J.C. Grunlan: Stiff and transparent multilayer thin films prepared through hydrogen-bonding layer-by-layer assembly of graphene and polymer. Adv. Funct. Mater. 26, 2143 (2016).

    Article  CAS  Google Scholar 

  23. T. Guin, B. Stevens, M. Krecker, J. D’Angelo, M. Humood, Y. Song, R. Smith, A. Polycarpou, and J.C. Grunlan: Ultrastrong, chemically resistant reduced graphene oxide-based multilayer thin films with damage detection capability. ACS Appl. Mater. Interfaces 8, 6229 (2016).

    Article  CAS  Google Scholar 

  24. S. Qin, M.G. Pour, S. Lazar, O. Köklükaya, J. Gerringer, Y. Song, L. Wågberg, and J.C. Grunlan: Super gas barrier and fire resistance of nanoplatelet/nanofibril multilayer thin films. Adv. Mater. Interfaces 6, 1801424 (2019).

    Article  CAS  Google Scholar 

  25. J.B. Schlenoff, S.T. Dubas, and T. Farhat: Sprayed polyelectrolyte multilayers. Langmuir 16, 9968 (2000).

    Article  CAS  Google Scholar 

  26. C. Lu, I. Dönch, M. Nolte, and A. Fery: Au nanoparticle-based multilayer ultrathin films with covalently linked nanostructures: Spraying layer-by-layer assembly and mechanical property characterization. Chem. Mater. 18, 6204 (2006).

    Article  CAS  Google Scholar 

  27. K.C. Krogman, N.S. Zacharia, S. Schroeder, and P.T. Hammond: Automated process for improved uniformity and versatility of layer-by-layer deposition. Langmuir 23, 3137 (2007).

    Article  CAS  Google Scholar 

  28. G.M. Nogueira, D. Banerjee, R.E. Cohen, and M.F. Rubner: Spray-layer-by-layer assembly can more rapidly produce optical-quality multistack heterostructures. Langmuir 27, 7860 (2011).

    Article  CAS  Google Scholar 

  29. P.C. Suarez-Martinez, J. Robinson, H. An, R.C. Nahas, D. Cinoman, and J.L. Lutkenhaus: Spray-on polymer–clay multilayers as a superior anticorrosion metal pretreatment. Macromol. Mater. Eng. 302, 1600552 (2017).

    Article  CAS  Google Scholar 

  30. S.R. Kwon, J-W. Jeon, and J.L. Lutkenhaus: Sprayable, paintable layer-by-layer polyaniline nanofiber/graphene electrodes. RSC Adv. 5, 14994 (2015).

    Article  CAS  Google Scholar 

  31. R. Blell, X. Lin, T. Lindström, M. Ankerfors, M. Pauly, O. Felix, and G. Decher: Generating in-plane orientational order in multilayer films prepared by spray-assisted layer-by-layer assembly. ACS Nano 11, 84 (2017).

    Article  CAS  Google Scholar 

  32. J.T. O’Neal, M.J. Bolen, E.Y. Dai, and J.L. Lutkenhaus: Hydrogen-bonded polymer nanocomposites containing discrete layers of gold nanoparticles. J. Colloid Interface Sci. 485, 260 (2017).

    Article  CAS  Google Scholar 

  33. H. Hu, M. Pauly, O. Felix, and G. Decher: Spray-assisted alignment of layer-by-layer assembled silver nanowires: A general approach for the preparation of highly anisotropic nano-composite films. Nanoscale 9, 1307 (2017).

    Article  CAS  Google Scholar 

  34. J. Heo, M. Choi, and J. Hong: Facile surface modification of polyethylene film via spray-assisted layer-by-layer self-assembly of graphene oxide for oxygen barrier properties. Sci. Rep. 9, 2754 (2019).

    Article  CAS  Google Scholar 

  35. M.Q. Zhao, N. Trainor, C.E. Ren, M. Torelli, B. Anasori, and Y. Gogotsi: Scalable manufacturing of large and flexible sheets of MXene/graphene heterostructures. Adv. Mater. Technol. 4, 1800639 (2019).

    Article  CAS  Google Scholar 

  36. A. Rani, K. Chung, J. Kwon, S.J. Kim, Y.H. Jang, Y.J. Jang, L.N. Quan, M. Yoon, J.H. Park, and D.H. Kim: Layer-by-layer self-assembled graphene multilayers as Pt-free alternative counter electrodes in dye-sensitized solar cells. ACS Appl. Mater. Interfaces 8, 11488 (2016).

    Article  CAS  Google Scholar 

  37. J. Hong and S.W. Kang: Carbon decorative coatings by dip-, spin-, and spray-assisted layer-by-layer assembly deposition. J. Nanosci. Nanotechnol. 11, 7771 (2011).

    Article  CAS  Google Scholar 

  38. S. De, C. Purcell, J. Murley, P. Flouda, S. Shah, M. Green, and J. Lutkenhaus: Spray-on reduced graphene oxide–poly(vinyl alcohol) supercapacitors for flexible energy and power. Adv. Mater. Interfaces 5, 1801237 (2018).

    Article  CAS  Google Scholar 

  39. B. Stevens, E. Dessiatova, D.A. Hagen, A.D. Todd, C.W. Bielawski, and J.C. Grunlan: Low-temperature thermal reduction of graphene oxide nanobrick walls: Unique combination of high gas barrier and low resistivity in fully organic polyelectrolyte multilayer thin films. ACS Appl. Mater. Interfaces 6, 9942 (2014).

    Article  CAS  Google Scholar 

  40. Y.H. Yang, L. Bolling, M.A. Priolo, and J.C. Grunlan: Super gas barrier and selectivity of graphene oxide-polymer multilayer thin films. Adv. Mater. 25, 503 (2013).

    Article  CAS  Google Scholar 

  41. S. De and J.L. Lutkenhaus: Corrosion behaviour of eco-friendly airbrushed reduced graphene oxide–poly(vinyl alcohol) coatings. Green Chem. 20, 506 (2018).

    Article  CAS  Google Scholar 

  42. R. Xiong, K. Hu, A.M. Grant, R. Ma, W. Xu, C. Lu, X. Zhang, and V.V. Tsukruk: Ultrarobust transparent cellulose nanocrystal-graphene membranes with high electrical conductivity. Adv. Mater. 28, 1501 (2016).

    Article  CAS  Google Scholar 

  43. D. Zhang, J. Tong, and B. Xia: Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly. Sens. Actuators, B 197, 66 (2014).

    Article  CAS  Google Scholar 

  44. D. Zhang, J. Tong, B. Xia, and Q. Xue: Ultrahigh performance humidity sensor based on layer-by-layer self-assembly of graphene oxide/polyelectrolyte nanocomposite film. Sens. Actuators, B 203, 263 (2014).

    Article  CAS  Google Scholar 

  45. C. Sellam, Z. Zhai, H. Zahabi, O.T. Picot, H. Deng, Q. Fu, E. Bilotti, and T. Peijs: High mechanical reinforcing efficiency of layered poly(vinyl alcohol)–graphene oxide nanocomposites. Nanocomposites 1, 89 (2015).

    Article  CAS  Google Scholar 

  46. S-M. Lee, H. Jeong, N.H. Kim, H-G. Kim, and J.H. Lee: Layer-by-layer assembled graphene oxide/polydiallydimethylammonium chloride composites for hydrogen gas barrier application. Adv. Compos. Mater. 27, 457 (2018).

    Article  Google Scholar 

  47. C. Vallés, X. Zhang, J. Cao, F. Lin, R.J. Young, A. Lombardo, A.C. Ferrari, L. Burk, R. Mülhaupt, and I.A. Kinloch: Graphene/polyelectrolyte layer-by-layer coatings for electromagnetic interference shielding. ACS Appl. Nano Mater. 2, 5272 (2019).

    Article  CAS  Google Scholar 

  48. Y. Akgöl, C. Cramer, C. Hofmann, Y. Karatas, H-D. Wiemhöfer, and M. Schönhoff: Humidity-Dependent DC conductivity of polyelectrolyte multilayers: Protons or other small ions as charge carriers? Macromolecules 43, 7282 (2010).

    Article  CAS  Google Scholar 

  49. S.T. Dubas and J.B. Schlenoff: Polyelectrolyte multilayers containing a weak polyacid: Construction and deconstruction. Macromolecules 34, 3736 (2001).

    Article  CAS  Google Scholar 

  50. N. Ladhari, J. Hemmerlé, C. Ringwald, Y. Haikel, J-C. Voegel, P. Schaaf, and V. Ball: Stratified PEI-(PSS-PDADMAC)20-PSS-(PDADMAC-TiO2)n multilayer films produced by spray deposition. Colloids Surf., A 322, 142 (2008).

    Article  CAS  Google Scholar 

  51. N. Ladhari, J. Hemmerlé, Y. Haikel, J-C. Voegel, P. Schaaf, and V. Ball: Stability of embossed PEI-(PSS-PDADMAC)20 multilayer films versus storage time and versus a change in ionic strength. Appl. Surf. Sci. 255, 1988 (2008).

    Article  CAS  Google Scholar 

  52. L. Wågberg, G. Decher, M. Norgren, T. Lindström, M. Ankerfors, and K. Axnäs: The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24, 784 (2008).

    Article  CAS  Google Scholar 

  53. I. Willner, Y. Eichen, A.J. Frank, and M.A. Fox: Photoinduced electron-transfer processes using organized redox-functionalized bipyridinium-polyethylenimine-titania colloids and particulate assemblies. J. Phys. Chem. 97, 7264 (1993).

    Article  CAS  Google Scholar 

  54. Y. Gu, Y. Ma, B.D. Vogt, and N.S. Zacharia: Contraction of weak polyelectrolyte multilayers in response to organic solvents. Soft Matter 12, 1859 (2016).

    Article  CAS  Google Scholar 

  55. S.S. Shiratori and M.F. Rubner: pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules 33, 4213 (2000).

    Article  CAS  Google Scholar 

  56. B. Stevens, T. Guin, O. Sarwar, A. John, K.R. Paton, J.N. Coleman, and J.C. Grunlan: Highly conductive graphene and polyelectrolyte multilayer thin films produced from aqueous suspension. Macromol. Rapid Commun. 37, 1790 (2016).

    Article  CAS  Google Scholar 

  57. W.S. Hummers and R.E. Offeman: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Materials Characterization Facility at Texas A&M University. This work was supported by the National Science Foundation (Grant No. 1905732) (J.L.L.). S.D. thanks the support from Collaborative Research Scheme, MHRD, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souvik De.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De, S., Patel, A. & Lutkenhaus, J.L. Layer-by-layer assembly of polymers and anisotropic nanomaterials using spray-based approach. Journal of Materials Research 35, 1163–1172 (2020). https://doi.org/10.1557/jmr.2020.44

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.44

Navigation