Skip to main content

Advertisement

Log in

Agglomerated nickel–cobalt layered double hydroxide nanosheets on reduced graphene oxide clusters as efficient asymmetric supercapacitor electrodes

  • 2D and Nanomaterials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Recently, layered double hydroxides (LDHs) have attracted intensive research interest as the next-generation supercapacitor electrodes due to their unique two-dimensional (2D) hydrotalcite-like structure. However, the inevitable agglomeration significantly decreases the accessible surface areas and blocks the pseudocapacitive sites, thus severely hinders their electrochemical applications. Herein, we develop a facile one-step growth approach to fabricate porous agglomerate of NiCo-LDH nanosheets and reduced graphene oxide (rGO) nanoflakes. By adjusting feeding molar ratios, the obtained NiCo-LDH/rGO electrode delivers a high specific capacity of 879.5 C/g at a current density of 0.5 A/g and still remains 485 C/g at 20 A/g. Furthermore, the fabricated asymmetric supercapacitor (ASC) has demonstrated a superior energy density of 48.7 W h/kg at a power density of 401 W/kg. After 2000 cycles, the assembled ASC exhibits an improved capacity retention of 81% within a potential window of 1.6 V at 2 A/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. X. Chen, T.Z. Hou, B. Li, C. Yan, L. Zhu, C. Guan, X.B. Cheng, H.J. Peng, J.Q. Huang, and Q. Zhang: Towards stable lithium–sulfur batteries: Mechanistic insights into electrolyte decomposition on lithium metal anode. Energy Storage Mater. 8, 194 (2017).

    Article  Google Scholar 

  2. C. Wang, E. Zhou, W. He, X. Deng, J. Huang, M. Ding, X. Wei, X. Liu, and X. Xu: NiCo2O4-based supercapacitor nanomaterials. Nanomaterials 7, 41 (2017).

    Article  CAS  Google Scholar 

  3. X. Zheng, Z. Gu, Q. Hu, B. Geng, and X. Zhang: Ultrathin porous nickel–cobalt hydroxide nanosheets for high-performance supercapacitor electrodes. RSC Adv. 5, 17007 (2015).

    Article  CAS  Google Scholar 

  4. Q. Zhang, Y. Wang, B. Zhang, K. Zhao, P. He, and B. Huang: 3D superelastic graphene aerogel–nanosheet hybrid hierarchical nanostructures as high-performance supercapacitor electrodes. Carbon 127, 449 (2018).

    Article  CAS  Google Scholar 

  5. L.L. Zhang and X.S. Zhao: Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520 (2009).

    Article  CAS  Google Scholar 

  6. X. Hui, L. Qian, G. Harris, T. Wang, and J. Che: Fast fabrication of NiO@graphene composites for supercapacitor electrodes: Combination of reduction and deposition. Mater. Des. 109, 242 (2016).

    Article  CAS  Google Scholar 

  7. M. Li, K.Y. Ma, J.P. Cheng, D. Lv, and X.B. Zhang: Nickel–cobalt hydroxide nanoflakes conformal coating on carbon nanotubes as a supercapacitive material with high-rate capability. J. Power Sources 286, 438 (2015).

    Article  CAS  Google Scholar 

  8. L. Zhang, J. Wang, J. Zhu, X. Zhang, K. San Hui, and K.N. Hui: 3D porous layered double hydroxides grown on graphene as advanced electrochemical pseudocapacitor materials. J. Mater. Chem. A 1, 9046 (2013).

    Article  CAS  Google Scholar 

  9. S. Singh, N.M. Shinde, Q.X. Xia, C.V.V.M. Gopi, J.M. Yun, R.S. Mane, and K.H. Kim: Tailoring the morphology followed by the electrochemical performance of NiMn-LDH nanosheet arrays through controlled co-doping for high-energy and power asymmetric supercapacitors. Dalton Trans. 46, 12876 (2017).

    Article  CAS  Google Scholar 

  10. Q. Wang and D. Ohare: Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 112, 4124 (2012).

    Article  CAS  Google Scholar 

  11. X. Wang, Y. Zheng, J. Yuan, J. Shen, J. Hu, A.J. Wang, L. Wu, and L. Niu: Three-dimensional NiCo layered double hydroxide nanosheets array on carbon cloth, facile preparation and its application in highly sensitive enzymeless glucose detection. Electrochim. Acta 224, 628 (2017).

    Article  CAS  Google Scholar 

  12. W. Li, B. Zhang, R. Lin, S. Ho-Kimura, G. He, X. Zhou, J. Hu, and I.P. Parkin: A dendritic nickel cobalt sulfide nanostructure for alkaline battery electrodes. Adv. Funct. Mater. 28, 1705937 (2018).

    Article  CAS  Google Scholar 

  13. H. Sim, C. Jo, T. Yu, E. Lim, S. Yoon, J.H. Lee, J. Yoo, J. Lee, and B. Lim: Reverse micelle synthesis of colloidal nickel–manganese layered double hydroxide nanosheets and their pseudocapacitive properties. Chem.–Eur. J. 20, 14880 (2014).

    Article  CAS  Google Scholar 

  14. Y. Liu, X. Teng, Y. Mi, and Z. Chen: A new architecture design of Ni–Co LDH-based pseudocapacitors. J. Mater. Chem. A 5, 24407 (2017).

    Article  CAS  Google Scholar 

  15. T. Li, R. Li, and H. Luo: Facile in situ growth of Ni/Co-LDH arrays by hypothermal chemical coprecipitation for all-solid-state asymmetric supercapacitors. J. Mater. Chem. A 4, 18922 (2016).

    Article  CAS  Google Scholar 

  16. X. Gong, J.P. Cheng, F. Liu, L. Zhang, and X. Zhang: Nickel–cobalt hydroxide microspheres electrodepositioned on nickel cobaltite nanowires grown on Ni foam for high-performance pseudocapacitors. J. Power Sources 267, 610 (2014).

    Article  CAS  Google Scholar 

  17. P. Huang, C. Cao, Y. Sun, S. Yang, F. Wei, and W. Song: One-pot synthesis of sandwich-like reduced graphene oxide@CoNiAl layered double hydroxide with excellent pseudocapacitive properties. J. Mater. Chem. A 3, 10858 (2015).

    Article  CAS  Google Scholar 

  18. X. Cai, X. Shen, L. Ma, Z. Ji, C. Xu, and A. Yuan: Solvothermal synthesis of NiCo-layered double hydroxide nanosheets decorated on RGO sheets for high performance supercapacitor. Chem. Eng. J. 268, 251 (2015).

    Article  CAS  Google Scholar 

  19. J. Shen, X. Li, N. Li, and M. Ye: Facile synthesis of NiCo2O4-reduced graphene oxide nanocomposites with improved electrochemical properties. Electrochim. Acta 141, 126 (2014).

    Article  CAS  Google Scholar 

  20. L. Zhi, W. Zhang, L. Dang, J. Sun, F. Shi, H. Xu, Z. Liu, and Z. Lei: Holey nickel–cobalt layered double hydroxide thin sheets with ultrahigh areal capacitance. J. Power Sources 387, 108 (2018).

    Article  CAS  Google Scholar 

  21. M. Jana, S. Saha, P. Samanta, N.C. Murmu, N.H. Kim, T. Kuila, and J.H. Lee: Growth of Ni–Co binary hydroxide on a reduced graphene oxide surface by a successive ionic layer adsorption and reaction (SILAR) method for high electrodes. J. Mater. Chem. A 4, 2188 (2016).

    Article  CAS  Google Scholar 

  22. J. Memon, J. Sun, D. Meng, W. Ouyang, M.A. Memon, Y. Huang, S. Yan, and J. Geng: Synthesis of graphene/Ni–Al layered double hydroxide nanowires and their application as an electrode material for supercapacitors. J. Mater. Chem. A 2, 5060 (2014).

    Article  CAS  Google Scholar 

  23. L. Wan, J. Xiao, F. Xiao, and S. Wang: Nanostructured (Co, Ni)-based compounds coated on a highly conductive three dimensional hollow carbon nanorod array (HCNA) scaffold for high performance pseudocapacitors. ACS Appl. Mater. Interfaces 6, 7735 (2014).

    Article  CAS  Google Scholar 

  24. G. Zhou, T. Xiong, S. He, Y. Li, Y. Zhu, and H. Hou: Asymmetric supercapacitor based on flexible TiC/CNF felt supported interwoven nickel–cobalt binary hydroxide nanosheets. J. Power Sources 317, 57 (2016).

    Article  CAS  Google Scholar 

  25. C. Yuan, J. Li, L. Hou, X. Zhang, L. Shen, and X.W.D. Lou: Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv. Funct. Mater. 22, 4592 (2012).

    Article  CAS  Google Scholar 

  26. Z. Chai, Z. Wang, J. Wang, X. Li, and H. Guo: Potentiostatic deposition of nickel cobalt sulfide nanosheet arrays as binder-free electrode for high-performance pseudocapacitor. Ceram. Int. 44, 15778 (2018).

    Article  CAS  Google Scholar 

  27. W. Yang, W. Yang, L. Kong, A. Song, X. Qin, and G. Shao: Phosphorus-doped 3D hierarchical porous carbon for high-performance supercapacitors: A balanced strategy for pore structure and chemical composition. Carbon 127, 557 (2018).

    Article  CAS  Google Scholar 

  28. Y.Y. Liang, S.J. Bao, and H.L. Li: Nanocrystalline nickel cobalt hydroxides/ultrastable y zeolite composite for electrochemical capacitors. J. Solid State Electrochem. 11, 571 (2007).

    Article  CAS  Google Scholar 

  29. N. Joseph and A.C. Bose: Metallic MoS2 grown on porous g-C3N4 as an efficient electrode material for supercapattery application. Electrochim. Acta 301, 401 (2019).

    Article  CAS  Google Scholar 

  30. S. Sun, M. Huang, P. Wang, and M. Lu: Controllable hydrothermal synthesis of Ni/Co MOF as hybrid advanced electrode materials for supercapacitor. J. Electrochem. Soc. 166, A1799 (2019).

    Article  CAS  Google Scholar 

  31. H. Liu, Y. Wang, Z. Li, Z. Yao, J. Lin, Y. Sun, and Z. Li: DNA-assisted synthesis of nickel cobalt sulfide nanosheets as high-performance battery-type electrode materials. J. Colloid Interface Sci. 528, 100 (2018).

    Article  CAS  Google Scholar 

  32. H. Wu, Y. Zhang, W. Yuan, Y. Zhao, S. Luo, X. Yuan, L. Zheng, and L. Cheng: Highly flexible, foldable and stretchable Ni–Co layered double hydroxide/polyaniline/bacterial cellulose electrodes for high-performance all-solid-state supercapacitors. J. Mater. Chem. A 6, 16617 (2018).

    Article  CAS  Google Scholar 

  33. B. Zhao, L. Zhang, Q. Zhang, D. Chen, Y. Cheng, X. Deng, Y. Chen, R. Murphy, X. Xiong, B. Song, C.P. Wong, M.S. Wang, and M. Liu: Rational design of nickel hydroxide-based nanocrystals on graphene for ultrafast energy storage. Adv. Energy Mater. 8, 1702247 (2018).

    Article  CAS  Google Scholar 

  34. M.V. Krylova, A.B. Kulikov, M.I. Knyazeva, and A.Y. Krylova: Cobalt-containing catalysts made from layered double hydroxides for synthesis of hydrocarbons from carbon monoxide and hydrogen. Chem. Technol. Fuels Oils 44, 339 (2008).

    Article  CAS  Google Scholar 

  35. Z. Gao, C. Chen, J. Chang, L. Chen, P. Wang, D. Wu, F. Xu, Y. Guo, and K. Jiang: Enhanced cycleability of faradaic CoNi2S4 electrode by reduced graphene oxide coating for efficient asymmetric supercapacitor. Electrochim. Acta 281, 394 (2018).

    Article  CAS  Google Scholar 

  36. W. Chen, C. Xia, and H.N. Alshareef: One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors. ACS Nano 8, 9531 (2014).

    Article  CAS  Google Scholar 

  37. L. Liu, H. Yu, A. Liu, Y. Xu, B. Feng, F. Yang, P. Zhang, J. Wang, Q. Deng, Z. Zeng, and S. Deng: Synthesis of self-templated urchin-like Ni2Co(CO3)2(OH)2 hollow microspheres for high-performance hybrid supercapacitor electrodes. Electrochim. Acta 327, 134970 (2019).

    Article  CAS  Google Scholar 

  38. Z. Huang, S. Wang, J. Wang, Y. Yu, J. Wen, and R. Li: Exfoliation-restacking synthesis of coal-layered double hydroxide nanosheets/reduced graphene oxide composite for high performance supercapacitors. Electrochim. Acta 152, 117 (2015).

    Article  CAS  Google Scholar 

  39. X. Bai, Q. Liu, H. Zhang, J. Liu, Z. Li, X. Jing, Y. Yuan, L. Liu, and J. Wang: Nickel–cobalt layered double hydroxide nanowires on three dimensional graphene nickel foam for high performance asymmetric supercapacitors. Electrochim. Acta 215, 492 (2016).

    Article  CAS  Google Scholar 

  40. H. Peng, M. Zhou, Y. Li, X. Cui, Y. Yang, and Y. Zhang: Ultrahigh voltage synthesis of 2D amorphous nickel–cobalt hydroxide nanosheets on CFP for high performance energy storage device. Electrochim. Acta 190, 695 (2016).

    Article  CAS  Google Scholar 

  41. J. Hao, C.Z. Li, T. Sun, and J. Ma: A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostrucutures and functional mesoporous carbon nanotubes. Nanoscale4, 807 (2012).

  42. D. Lee, K.S. Kim, J.M. Yun, S.Y. Yoon, S. Mathur, H.C. Shin, and K.H. Kim: Synergistic effects of dual nano-type electrode of NiCo-nanowire/NiMn-nanosheet for high-energy supercapacitors. J. Alloys Compd. 789, 119 (2019).

    Article  CAS  Google Scholar 

  43. H. Wang, M. Liang, C. Ma, W. Shi, D. Duan, G. He, and Z. Sun: Novel dealloying-fabricated NiCo2S4 nanoparticles with excellent cycling performance for supercapacitors. Nanotechnology 30, 235402 (2019).

    Article  CAS  Google Scholar 

  44. W.Q. Chen, J. Wang, K.Y. Ma, M. Li, S.H. Guo, F. Liu, and J.P. Cheng: Hierarchical NiCo2O4@Co–Fe LDH core–shell nanowire arrays for high-performance supercapacitor. Appl. Surf. Sci. 451, 280 (2018).

    Article  CAS  Google Scholar 

  45. Y. Bai, W. Wang, R. Wang, J. Sun, and L. Gao: Controllable synthesis of 3D binary nickel-cobalt hydroxide/graphene/nickel foam as a binder-free electrode for high-performance supercapacitors. J. Mater. Chem. A 3, 12530 (2015).

    Article  CAS  Google Scholar 

  46. M. Li, J.P. Cheng, J. Wang, F. Liu, and X.B. Zhang: The growth of nickel–manganese and cobalt–manganese layered double hydroxides on reduced graphene oxide for supercapacitor. Electrochim. Acta 206, 108 (2016).

    Article  CAS  Google Scholar 

  47. H. Xing, Y. Lan, Y. Zong, Y. Sun, X. Zhu, X. Li, and X. Zheng: Ultrathin NiCo-layered double hydroxide nanosheets arrays vertically grown on Ni foam as binder-free high-performance supercapacitors. Inorg. Chem. Commun. 101, 125 (2019).

    Article  CAS  Google Scholar 

  48. Y.J. Yang and W. Li: Hierarchical Ni–Co double hydroxide nanosheets on reduced graphene oxide self-assembled on Ni foam for high-energy hybrid supercapacitors. J. Alloys Compd. 776, 543 (2019).

    Article  CAS  Google Scholar 

  49. W.S. Hummers and R.E. Offeman: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

  50. D.C.D. Marcano, D.D.V. Kosynkin, J.M.J. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, and J.M. Tour: Improved synthesis of graphene oxide. ACS Nano 4, 4806 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21908090) and key youth program of Natural Science Foundation of Jiangxi Province (No. 20192ACB21015). The authors would like to acknowledge the support from the Nanchang University and Arizona State University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Wang or Shuguang Deng.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Liu, A., Xu, Y. et al. Agglomerated nickel–cobalt layered double hydroxide nanosheets on reduced graphene oxide clusters as efficient asymmetric supercapacitor electrodes. Journal of Materials Research 35, 1205–1213 (2020). https://doi.org/10.1557/jmr.2020.39

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.39

Navigation