Skip to main content
Log in

Modified triazine-based carbon nitride as a high efficiency fluorescence sensor for the label-free detection of Ag+

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A triazine-based graphite carbon nitride (tri-C3N4) was successfully prepared using a solid and mild method, and modified through concentrated acid and the hydrothermal method. Interestingly, the modified tri-C3N4 (tri-HC3N4) showed good water stability and excellent fluorescence property. Meanwhile, tri-HC3N4 was successfully used to construct a high-sensitive and selective fluorescence sensor to Ag+. The as-prepared fluorescence sensor showed a fast response and a low detection limit as 0.4046 μM. Moreover, the possible quenching mechanisms were discussed based on the photoinduced electron transfer and the formation of new complex between tri-HC3N4 and Ag+ with the help of the related characterizations. This study does not only provide a new tri-HC3N4 for a high efficiency fluorescence sensor, but also show the potential application in biological sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Scheme 1:

Similar content being viewed by others

References

  1. S.W. Zhang, M.Y. Zeng, J.Z. Xu, X.K. Wang, and W.P. Hu: Polymer nanodots of graphitic carbon nitride as effective fluorescent probes for the detection of Fe3+ and Cu2+ ions. Nanoscale 6, 4157 (2014).

    Article  CAS  Google Scholar 

  2. X. Fan, Y. Su, D. Deng, and Y. Lv: Carbon nitride quantum dot-based chemiluminescenceresonance energy transfer for iodide ion sensing. RSC Adv. 6, 76890 (2016).

    Article  CAS  Google Scholar 

  3. S. Wang, F. He, P. Dong, Z. Tai, C. Zhao, Y. Wang, F. Liu, and L. Lin: Simultaneous morphology, band structure, and defect optimization of graphitic carbon nitride microsphere by the precursor concentration to boost photocatalytic activity. J. Mater. Res. 33, 3917 (2018).

    Article  CAS  Google Scholar 

  4. Y. Zhang, K. Pan, Y. Qu, G. Wang, Q. Dai, D. Wang, and W. Qin: Luminescent material with functionalized graphitic carbon nitride as a photovoltaic booster in DSSCs: Enhanced charge separation and transfer. J. Mater. Res. 34, 616 (2019).

    Article  CAS  Google Scholar 

  5. M. Xiong, Q. Rong, H.M. Meng, and X.B. Zhang: Two-dimensional graphitic carbon nitride nanosheets for biosensing applications. Biosens. Bioelectron. 89, 212 (2017).

    Article  CAS  Google Scholar 

  6. Q. Zhuang, L. Sun, and Y. Ni: One-step synthesis of graphitic carbon nitride nanosheets with the help of melamine and its application for fluorescence detection of mercuric ions. Talanta 164, 458 (2017).

    Article  CAS  Google Scholar 

  7. E.Z. Lee, Y.S. Jun, W.H. Hong, A. Thomas, and M.M. Jin: Cubic mesoporous graphitic carbon (IV) nitride: An all-in-one chemosensor for selective optical sensing of metal ions. Angew. Chem. 49, 9706 (2010).

    Article  CAS  Google Scholar 

  8. H. Zhang, Y. Huang, S. Hu, Q. Huang, C. Wei, W. Zhang, L. Kang, Z. Huang, and A. Hao: Fluorescent probes for “off-on” sensitive and selective detection of mercury ions and L-cysteine based on graphitic carbon nitride nanosheets. J. Mater. Chem. C 3, 2093 (2014).

    Article  CAS  Google Scholar 

  9. Y. Han, Q. Zhang, X. Lin, F. Lu, Z. Zhang, and Z. Hu: Lanthanum loaded graphitic carbon nitride nanosheets for highly sensitive and selective fluorescent detection of iron ions. Sens. Actuat. B 255, 2218 (2018).

    Article  CAS  Google Scholar 

  10. Y. Tang, H. Song, Y. Su, and Y. Lv: Turn-on persistent luminescence probe based on graphitic carbon nitride for imaging detection of biothiols in biological fluids. Anal. Chem. 85, 11876 (2013).

    Article  CAS  Google Scholar 

  11. N. Wang, X. Wang, J.J. Lv, P. Wang, W.H. Jia, W. Bian, and M.F. Choi: A fluorescent probe using phosphorus-doped graphite carbon nitride nanosheets for the detection of silver ions and cell imaging. Can. J. Chem. 98, 408 (2020).

    Article  CAS  Google Scholar 

  12. Y. Zeng, X. Liu, C. Liu, L. Wang, Y. Xia, S. Zhang, S. Luo, and Y. Pei: Scalable one-step production of porous oxygen-doped g-C3N4 nanorods with effective electron separation for excellent visible-light photocatalytic activity. Appl. Catal. B 224, 1 (2018).

    Article  CAS  Google Scholar 

  13. L. Ming, H. Yue, L. Xu, and F. Chen: Hydrothermal synthesis of oxidized g-C3N4 and its regulation of photocatalytic activity. J. Mater. Chem. A 2, 19145 (2014).

    Article  CAS  Google Scholar 

  14. P. Yang, J. Wang, G. Yue, R. Yang, P. Zhao, L. Yang, X. Zhao, and D. Astruc: Constructing mesoporous g-C3N4/ZnO nanosheets catalyst for enhanced visible-light driven photocatalytic activity. J. Photochem. Photobiol. A 388, 112169 (2020).

    Article  CAS  Google Scholar 

  15. L. Li, D. Deng, S. Huang, H. Song, K. Xu, L. Zhang, and Y. Lv: UV-assisted cataluminescent sensor for carbon monoxide based on oxygen-functionalized g-C3N4 nanomaterials. Anal. Chem. 90, 9598 (2018).

    Article  CAS  Google Scholar 

  16. S.C. Yan, Z.S. Li, and Z.G. Zou: Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25, 10397 (2009).

    Article  CAS  Google Scholar 

  17. H. Ou, W. Zhang, X. Yang, Q. Cheng, G. Liao, H. Xia, and D. Wang: One-pot synthesis of g-C3N4-doped amine-rich porous organic polymer for chlorophenol removal. Environ. Sci. Nano 5, 169 (2017).

    Article  Google Scholar 

  18. L. Zhao, W. Lv, J. Hou, Y. Li, J. Duan, and S. Ai: Synthesis of magnetically recyclable g-C3N4/Fe3O4/ZIF-8 nanocomposites for excellent adsorption of malachite green. Microchem. J. 152, 104425 (2020).

    Article  CAS  Google Scholar 

  19. M. Tahir, C. Cao, N. Mahmood, F.K. Butt, A. Mahmood, F. Idrees, S. Hussain, M. Tanveer, Z. Ali, and I. Aslam: Multifunctional g-C3N4 nanofibers: A template-free fabrication and enhanced optical, electrochemical, and photocatalyst properties. ACS Appl. Mater. Interfaces 6, 1258 (2014).

    Article  CAS  Google Scholar 

  20. J.Q. Tian, Q. Liu, A.M. Arisri, A.O. Al-Youbi, and X.P. Sun: Ultrathin graphitic carbon nitride nanosheet: A highly efficient fluorosensor for rapid, ultrasensitive detection of Cu2+. Anal. Chem. 85, 5595 (2013).

    Article  CAS  Google Scholar 

  21. W. Bian, H. Zhang, Q. Yu, M.J. Shi, S.M. Shuang, Z.W. Cai, and M.F. Choi: Detection of Ag+ using graphite carbon nitride nanosheets based on fluorescence quenching. Spectrochim. Acta A 169, 122 (2016).

    Article  CAS  Google Scholar 

  22. A. Hatamie, F. Marahel, and A. Sharifat: Green synthesis of graphitic carbon nitride nanosheet (g-C3N4) and using it as a label-free fluorosensor for detection of metronidazole via quenching of the fluorescence. Talanta 176, 518 (2018).

    Article  CAS  Google Scholar 

  23. K. Hu, T. Zhong, Y. Huang, Z. Chen, and S. Zhao: Graphitic carbon nitride nanosheet-based multicolour fluorescent nanoprobe for multiplexed analysis of DNA. Microchim. Acta 182, 949 (2015).

    Article  CAS  Google Scholar 

  24. X. Liao, Z. Li, T. Peng, J. Li, F. Qin, and Z. Huang: Ultra-sensitive fluorescent sensor for intracellular miRNA based on enzyme-free signal amplification with carbon nitride nanosheet as a carrier. Luminescence 32, 1411 (2017).

    Article  CAS  Google Scholar 

  25. S. Kokura, O. Handa, T. Takagi, T. Ishikawa, Y. Naito, and T. Yoshikawa: Silver nanoparticles as a safe preservative for use in cosmetics. Nanomedicine 6, 570 (2010).

    Article  CAS  Google Scholar 

  26. S. Maitre, K. Jaber, J.L. Perrot, C. Guy, and F. Cambazard: Increased serum and urinary levels of silver during treatment with topical silver sulfadiazine. Ann. Dermatol. Vénér. 129, 217 (2002).

    CAS  Google Scholar 

  27. J.F. Zhang, Y. Zhou, J. Yoon, and J.S. Kim: Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions). Chem. Soc. Rev. 40, 3416 (2011).

    Article  CAS  Google Scholar 

  28. L. Natalie, V. Houdt, V.H. Rob, K. Mijnendonckx, M. Jacques, and S. Simon: Antimicrobial silver: Uses, toxicity and potential for resistance. Biometals 26, 609 (2013).

    Article  CAS  Google Scholar 

  29. Y. Lv, L. Zhu, H. Liu, Y. Wu, Z. Chen, H. Fu, and Z. Tian: Single-fluorophore-based fluorescent probes enable dual-channel detection of Ag+ and Hg²+ with high selectivity and sensitivity. Anal. Chim. Acta 839, 74 (2014).

    Article  CAS  Google Scholar 

  30. G.C.Y. Chan, Z. Zhu, and G.M. Hieftje: Operating parameters and observation modes for individual droplet analysis by inductively coupled plasma-atomic emission spectrometry. Spectrochim. Acta B. 76, 77 (2012).

    Article  CAS  Google Scholar 

  31. J. Hu, Z. Liu, and H. Wang: Determination of trace silver in superalloys and steels by inductively coupled plasma-mass spectrometry. Anal. Chim. Acta 451, 329 (2002).

    Article  CAS  Google Scholar 

  32. M.K. Rofouei, M. Payehghadr, M. Shamsipur, and A. Ahmadalinezhad: Solid phase extraction of ultra traces silver(I) using octadecyl silica membrane disks modified by 1,3-bis(2-cyanobenzene) triazene (CBT) ligand prior to determination by flame atomic absorption. J. Hazard. Mater. 168, 1184 (2009).

    Article  CAS  Google Scholar 

  33. H.Q. Huang, R. Chen, J.L. Ma, L. Yan, Y.Q. Zhao, Y. Wang, W.J. Zhang, J. Fan, and X.F. Chen: Graphitic carbon nitride solid nanofilms for selective and recyclable sensing of Cu2+ and Ag+ in water and serum. Chem. Commun. 50, 15415 (2014).

    Article  CAS  Google Scholar 

  34. S. Sirilaksanapong, M. Sukwattanasinitt, and P. Rashatasakhon: 1,3,5-Triphenylbenzene fluorophore as a selective Cu2+ sensor in aqueous media. Chem. Commun. 48, 293 (2011).

    Article  Google Scholar 

  35. G.Y. Lan, C.C. Huang, and H.T. Chang: Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions. Chem. Commun. 46, 1257 (2010).

    Article  CAS  Google Scholar 

  36. C. Kan, X. Shao, F. Song, J. Xu, J. Zhu, and L. Du: Bioimaging of a fluorescence rhodamine-based probe for reversible detection of Hg (II) and its application in real water environment. Microchem. J. 150, 104142 (2019).

    Article  CAS  Google Scholar 

  37. S.A. Nsibande and P.B.C. Forbes: Development of a quantum dot molecularly imprinted polymer sensor for fluorescence detection of atrazine. Luminescence 34, 480 (2019).

    Article  CAS  Google Scholar 

  38. L. Liu, Z. Mi, Z. Guo, J. Wang, and F. Feng: A label-free fluorescent sensor based on carbon quantum dots with enhanced sensitive for the determination of myricetin in real samples. Microchem. J. 157, 104956 (2020).

    Article  CAS  Google Scholar 

  39. W. Zhu, H. Song, and Y. Lv: Triazine-based graphitic carbon nitride: Controllable synthesis and enhanced cataluminescent sensing for formic acid. Anal. Bioanal. Chem. 410, 17266 (2018).

    Google Scholar 

  40. A. Wang, X. Zhang, and M. Zhao: Topological insulator states in a honeycomb lattice of s-triazines. Nanoscale 6, 11157 (2014).

    Article  CAS  Google Scholar 

  41. L.Y. Hao, H.J. Song, Y.Y. Su, and Y. Lv: A cubic luminescent graphene oxide functionalized Zn-based metal-organic framework composite for fast and highly selective detection of Cu2+ions in aqueous solution. Analyst 139, 764 (2014).

    Article  CAS  Google Scholar 

  42. M. Algarra, B.B. Campos, K. Radotić, D. Mutavdžić, T.J. Bandosz, J. Jiménez-Jiménez, and E. Rodriguez-Castellon: Silva, luminescent carbon nanoparticles: Effects of chemical functionalization, and evaluation of Ag+ sensing properties. J. Mater. Chem. A 2, 8342 (2014).

    Article  CAS  Google Scholar 

  43. J. Ma, B. Guo, X. Cao, Y. Lin, B. Yao, F. Li, W. Wen, and L. Huang: One-pot fabrication of hollow cross-linked fluorescent carbon nitride nanoparticles and their application in the detection of mercuric ions. Talanta 143, 205 (2015).

    Article  CAS  Google Scholar 

  44. V.K. Kaushik: XPS core level spectra and Auger parameters for some silver compounds. J. Electron. Spectrosc. Relat. Phenom. 56, 273 (1991).

    Article  CAS  Google Scholar 

  45. A.I. Boronin, S.V. Koscheev, O.V. Kalinkina, and G.M. Zhidomirov: Oxygen states during thermal decomposition of Ag2O: XPS and UPS study. Reac. Kinet. Catal. Lett. 63, 291 (1998).

    Article  CAS  Google Scholar 

  46. L.J. Gerenser: Photoemission investigation of silver/poly(ethylene terephthalate) interfacial chemistry: The effect of oxygen-plasma treatment. J. Vac. Sci. Technol. A 8, 3682 (1990).

    Article  CAS  Google Scholar 

  47. K. Gai, M.P. Kang, Q. Huang, S.N. Zheng, L. Zhang, C.L. Zhang, and L.Y. Hao: A novel, green, and biocompatible grapheme-based carbonaceous material for immobilization of cytochrome c. J. Mater. Res. 33, 4270 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was funded by the National Natural Science Foundation of China (No. 21874094) and Science & Technology Department of Sichuan Province of China (No. 2020YFS0073). The authors thank Lingzhu Yu (National Engineering Research Center for Biomaterials, Sichuan University) and Dr. Shuguang Yan (Analytical & Testing Center, Sichuan University) for their generous help in characterizing SEM and XPS, respectively. We also thank the State Key Laboratory of Oral Diseases at Sichuan University provided the cell experiment platform.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjie Song.

Supplementary material

Supplementary material

To view supplementary material for this article, please visit https://doi.org/10.1557/jmr.2020.314.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, L., Song, H. & Lv, Y. Modified triazine-based carbon nitride as a high efficiency fluorescence sensor for the label-free detection of Ag+. Journal of Materials Research 35, 3235–3246 (2020). https://doi.org/10.1557/jmr.2020.314

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.314

Keywords

Navigation