Skip to main content
Log in

Multi-scale modeling of fatigue damage in a metal wire film with the thickness effect

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The thickness effect has a significant influence on the fatigue life of micro–nanometer thin films. Due to the increasing application of micro–nanometer thin films in the field of microelectronics, a suitable fatigue prediction model is urgently needed. To reveal the impact of the thickness effect on the fatigue life of a copper wire film, cyclic tension fatigue test of four groups of copper wire films were carried out. Based on the theory of continuous damage mechanics and damage homogenization method, a fatigue damage accumulation model that considered the film thickness was proposed. Based on the proposed fatigue damage prediction model, the damage evolution law and fatigue life of copper wire films with different thickness and strain range were predicted. Furthermore, the size effect of the copper films was analyzed. The results showed that the fatigue life of copper wire films will decrease with the increase of thickness and strain amplitude; the thinner the film, the more significant the thickness effect on the fatigue life is; with the increase of the film thickness, the film thickness effect will gradually decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
TABLE 1:
Figure 4:
Figure 5:
Figure 6:
TABLE 2:
Figure 7:
Figure 8:

Similar content being viewed by others

References

  1. S.M. Spearing: Materials issues in microelectromechanical systems (MEMS). Acta Mater. 48, 179–196 (2000).

    Article  CAS  Google Scholar 

  2. G.P. Zhang, C.A. Volkert, R. Schwaiger, P. Wellner, E. Arzt, and O. Kraft: Length-scale-controlled fatigue mechanisms in thin copper films. Acta Mater. 54, 3127–3139 (2006).

    Article  CAS  Google Scholar 

  3. B. Bhushan, A.V. Kulkarni, W. Bonin, and J.T. Wyrobek: Nanoindentation and picoindentation measurements using a capacitive transducer system in atomic force microscopy. Philos. Mag. A 74, 1117–1128 (1996).

    Article  CAS  Google Scholar 

  4. G.P. Zhang, F. Liang, X.M. Luo, and X.F. Zhu: A review on cyclic deformation damage and fatigue fracture behavior of metallic nanolayered composites. J. Mater. Res. 34, 1–10 (2019).

    Google Scholar 

  5. J. Liang, L. Li, X. Niu, Z. Yu, and Q. Pei: Elastomeric polymer light-emitting devices and displays. Nat. Photonics 7, 817–824 (2013).

    Article  CAS  Google Scholar 

  6. T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya: Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 8, 494–499 (2009).

    Article  CAS  Google Scholar 

  7. S. Xu, Y. Zhang, J. Cho, J. Lee, X. Huang, L. Jia, J.A. Fan, Y. Su, J. Su, H. Zhang, H. Cheng, B. Lu, C. Yu, C. Chuang, T. Kim, T. Song, K. Shigeta, S. Kang, C. Dagdeviren, I. Petrov, P.V. Braun, Y. Huang, U. Paik, and J.A. Rogers: Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 4, 1543 (2013).

    Article  CAS  Google Scholar 

  8. J. Yoon, A.J. Baca, S. Park, P. Elvikis, J.B.I. Geddes, L. Li, R.H. Kim, J. Xiao, S. Wang, T. Kim, M.J. Motala, B.Y. Ahn, E.B. Duoss, J.A. Lewis, R.G. Nuzzo, P.M. Ferreira, Y. Huang, A. Rockett, and J.A. Rogers: Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat. Mater. 7, 907–915 (2008).

    Article  CAS  Google Scholar 

  9. A.J. Baca, J.H. Ahn, Y. Sun, M.A. Meitl, E. Menard, H.S. Kim, W.M. Choi, D.H. Kim, Y. Huang, and J.A. Rogers: Semiconductor wires and ribbons for high-performance flexible electronics. Angew. Chem. 47, 5524–5542 (2008).

    Article  CAS  Google Scholar 

  10. D. Kim, J. Song, W.M. Choi, H. Kim, R. Kim, Z. Liu, Y.Y. Huang, K. Hwang, Y. Zhang, and J.A. Rogers: Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl. Acad. Sci. USA 105, 18675–18680 (2008).

  11. W.H. Chuang, R.K. Fettig, and R. Ghodssi: An electrostatic actuator for fatigue testing of low-stress LPCVD silicon nitride thin films. Sens. Actuat. A 121, 557–565 (2005).

    Article  CAS  Google Scholar 

  12. C.L. Muhlstein, S.B. Brown, and R.O. Ritchie: High-cycle fatigue of single-crystal silicon thin films. J. Microelectromech. Syst. 10, 593–600 (2001).

    Article  Google Scholar 

  13. D.H. Alsem, O.N. Pierron, E.A. Stach, C.L. Muhlstein, and R.O. Ritchie: Mechanisms for fatigue of micron-scale silicon structural films. Adv. Eng. Mater. 9, 15–30 (2007).

    Article  CAS  Google Scholar 

  14. O. Kraft, P. Wellner, M. Hommel, R. Schwaiger, and E. Arzt: Fatigue behavior of polycrystalline thin copper films. Z. Metallkde. 93, 392–400 (2002).

    Article  CAS  Google Scholar 

  15. O. Kraft, R. Schwaiger, and P. Wellner: Fatigue in thin films: lifetime and damage formation. Mat. Sci. Eng. A: Struct. 319, 919–923 (2001).

    Article  Google Scholar 

  16. D. Wang, C.A. Volkert, and O. Kraft: Effect of length scale on fatigue life and damage formation in thin Cu films. Mat. Sci. Eng. A: Struct. 493, 267–273 (2008).

    Article  CAS  Google Scholar 

  17. T.C. Hu, Y.T. Wang, F.C. Hsu, P.K. Sun, and M.T. Lin: Cyclic creep and fatigue testing of nanocrystalline copper thin films. Surf. Coat. Technol. 215, 393–399 (2013).

    Article  CAS  Google Scholar 

  18. T. Kondo, X. Bi, H. Hirakata, and K. Minoshima: Mechanics of fatigue crack initiation in submicron-thick freestanding copper films. Int. J. Fatigue 82, 12–28 (2016).

    Article  CAS  Google Scholar 

  19. F. Saghaeian, M. Lederer, A. Hofer, J. Todt, J. Keckes, and G. Khatibi: Investigation of high cyclic fatigue behaviour of thin copper films using MEMS structure. Int. J. Fatigue 128, 105179 (2019).

    Article  CAS  Google Scholar 

  20. Y.S. Lee, G.D. Sim, J.S. Bae, J.Y. Kim, and S.B. Lee: Tensile and fatigue behavior of polymer supported silver thin films at elevated temperatures. Mater. Lett. 193, 81–84 (2017).

    Article  CAS  Google Scholar 

  21. Y. Yang, B. Zhang, H. Wan, K. Liu, and G. Zhang: Bilayer graphene-covered Cu flexible electrode with excellent mechanical reliability and electrical performance. J. Mater. Res. 34, 3645–3653 (2019).

    Article  CAS  Google Scholar 

  22. J. Lemaitre: A Course on Damage Mechanics (Springer-Verlag, 1996). doi:10.1007/978-3-642-18255-6.

    Book  Google Scholar 

  23. B. Sun, X. Huang, and Z. Li: Electro-mechanical degradation model of flexible metal films due to fatigue damage accumulation. Met. Mater. Int. 26, 501–509 (2020).

    Article  CAS  Google Scholar 

  24. J. Lemaitre, J.L. Chaboche, and A.K. Maji: Mechanics of solid materials. J. Eng. Mech. 119, 642–643 (1992).

    Article  Google Scholar 

  25. X.M. Luo and G.P. Zhang: Grain boundary instability dependent fatigue damage behavior in nanoscale gold films on flexible substrates. Mater. Sci. Eng. A (2017).

    Google Scholar 

  26. S. Zheng, X. Luo, and G. Zhang: Cumulative shear strain-induced preferential orientation during abnormal grain growth near fatigue crack tips of nanocrystalline Au films. J. Mater. Res. 35, 372–379 (2020).

    Article  CAS  Google Scholar 

  27. B. Sun: A continuum model for damage evolution simulation of the high strength bridge wires due to corrosion fatigue. J. Constr. Steel Res. 146, 76–83 (2018).

    Article  Google Scholar 

  28. B. Sun and Z. Li: A multi-scale damage model for fatigue accumulation due to short cracks nucleation and growth. Eng. Fract. Mech. 127, 280–295 (2014).

    Article  Google Scholar 

  29. H. Guo, B. Sun, and Z. Li: Multi-scale fatigue damage model for steel structures working under high temperature. Acta Mech. Sin. (2019).

    Google Scholar 

  30. C. Fan, Z. Li, and Y. Wang: A multi-scale corrosion fatigue damage model of high-strength bridge wires. Int. J. Damage Mech. 29, 887–901 (2019).

    Article  Google Scholar 

  31. Y.S. Hong, Z.Y. Gu, B. Fang, and Y.L. Bai: Collective evolution characteristics and computer simulation of short fatigue cracks. Philos. Mag. A 75, 1517–1531 (1997).

    Article  CAS  Google Scholar 

  32. H.L. Yu and Y.S. Hong: Collective evolution characteristics and computer simulation of voids near the crack tip of ductile metal. Key Eng. Mat. 183-187, 157–162 (2000).

    Article  Google Scholar 

  33. L. Wang, Z. Wang, W. Xie, and X. Song: Fractal study on collective evolution of short fatigue cracks under complex stress conditions. Int. J. Fatigue 45, 1–7 (2012).

    Article  Google Scholar 

  34. B. Sun, Y. Xu, and Z. Li: Multi-scale fatigue model and image-based simulation of collective short cracks evolution process. Comput. Mater. Sci. 117, 24–32 (2016).

    Article  Google Scholar 

  35. Y. Qiao and Y. Hong: A stochastic model for evolution of collective short-fatigue-cracks based on local field analysis. Acta Mech. Sin. 30, 564–571 (1998).

    Google Scholar 

  36. Y. Qiao and Y.S. Hong: An analysis of collective damage for short fatigue cracks based on equilibrium of crack numerical density. Eng. Fract. Mech. 59, 151–163 (1998).

    Article  Google Scholar 

  37. L. Wang, Z. Wang, and M. Yu: Experimental study and numerical simulation on coalescence and interference of short cracks for low cycle fatigue at hight temperature. J. Mech. Strength 30, 642–646 (2008).

    CAS  Google Scholar 

  38. Y. Xu, F. Jiang, S. Newbern, A. Huang, C.M. Ho, and Y.C. Tai: Flexible shear-stress sensor skin and its application to unmanned aerial vehicles. Sens. Actuat. A Phys. 105, 321–329 (2003).

    Article  CAS  Google Scholar 

  39. R. Schwaiger and O. Kraft: Size effects in the fatigue behavior of thin Ag films. Acta Mater. 51, 195–206 (2003).

    Article  CAS  Google Scholar 

  40. T. Kondo, H. Hirakata, and K. Minoshima: Thickness effects on fatigue crack propagation in submicrometer-thick freestanding copper films. Int. J. Fatigue 103, 444–455 (2017).

    Article  CAS  Google Scholar 

  41. J.Y. Zhang, X. Zhang, G. Liu, R.H. Wang, G.J. Zhang, and J. Sun: Length scale dependent yield strength and fatigue behavior of nanocrystalline Cu thin films. Mat. Sci. Eng. A: Struct. 528, 7774–7780 (2011).

    Article  CAS  Google Scholar 

  42. Y. Bai, F. Ke, and M. Xia: Formulation of statistical evolution of microcracks in solids. Acta Mech. Sin. 7, 61–68 (1991).

    Google Scholar 

  43. F.J. Ke, Y.L. Bai, and M.F. Xia: Evolution of ideal micro-crack system. Sci. China Ser. A 33, 1447–1459 (1990).

    Google Scholar 

Download references

Acknowledgments

The works described in the present paper are financially supported by Jiangsu Province Natural Sciences Fund Subsidization Project (BK20170655), the Fundamental Research Funds for the Central Universities (3205009203), and Zhishan Youth Scholar Program of SEU, to which the authors are most grateful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoxia Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Sun, B. & Li, Z. Multi-scale modeling of fatigue damage in a metal wire film with the thickness effect. Journal of Materials Research 35, 3170–3179 (2020). https://doi.org/10.1557/jmr.2020.307

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.307

Navigation