Skip to main content

Advertisement

Log in

A de novo theranostic nanomedicine composed of PEGylated graphene oxide and gold nanoparticles for cancer therapy

  • Biomedical Materials, Regenerative Medicine and Drug Delivery
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A de novo drug delivery nanosystem based on gold nanoparticles (GNPs), decorated poly(ethylene glycol) (PEG), and folate (FA)-conjugated graphene oxide (GO) was designed and developed successfully. Initially, the graphite (G) powder was oxidized to the GO, and then functionalized with chloroacetic acid to afford a carboxylated graphene oxide (GO–COOH). The obtained GO–COOH was functionalized with an amine end-caped PEG, FA, as well as 3-amino-1-propanethiol to produce a GO–PEG–FA–SH. In another experimental section, GNPs were synthesized through a citrate-mediated reduction approach, and subsequently decorated onto/into GO–PEG–FA–SH through the formation of Au–S bond to afford a GO–PEG–FA/GNP nanosystem. The resultant nanosystem was loaded with doxorubicin hydrochloride (DOX) as a model anticancer drug, and its drug-loading capacity as well as pH-dependent drug release behavior were investigated. The anticancer activity of the developed theranostic nanomedicine was extensively evaluated using MTT assay against human breast cancer cells (MCF7). The developed GO–PEG–FA/GNPs–DOX theranostic nanomedicine exhibited an excellent cancer chemotherapy feature. In addition, this nanomedicine can be used in chemo-photothermal therapy of solid tumors because of the presence of GO and GNPs in its structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. W.H. Organization, Cancer, Fact Sheet #297, 2011.

  2. N. Poorgholy, B. Massoumi, and M. Jaymand: A novel starch-based stimuli-responsive nanosystem for theranostic applications. Int. J. Biol. Macromol. 97, 654 (2017).

    Article  CAS  Google Scholar 

  3. B. Massoumi, N. Poorgholy, and M. Jaymand: Multistimuli responsive polymeric nanosystems for theranostic applications. Int. J. Polym. Mater. Polym. Biomater. 66, 38 (2017).

    Article  CAS  Google Scholar 

  4. M. Swierczewska, H.S. Han, K. Kim, J.H. Park, and S. Lee: Polysaccharide-based nanoparticles for theranostic nanomedicine. Adv. Drug Deliv. Rev. 99, 70 (2016).

    Article  CAS  Google Scholar 

  5. A.O. Elzoghby, A.L. Hemasa, and M.S. Freag: Hybrid protein-inorganic nanoparticles: From tumor-targeted drug delivery to cancer imaging. J. Control. Release 243, 303 (2016).

    Article  CAS  Google Scholar 

  6. M.S. Muthu, D.T. Leong, L. Mei, and S.S. Feng: Nanotheranostics—Application and further development of nanomedicine strategies for advanced theranostics. Theranostics 4, 660 (2014).

    Article  CAS  Google Scholar 

  7. B.R. Smith and S.S. Gambhir: Nanomaterials for in vivo imaging. Chem. Rev. 117, 901 (2017).

    Article  CAS  Google Scholar 

  8. Y. Chen, Y. Wu, B. Sun, S. Liu, and H. Liu: Two-dimensional nanomaterials for cancer nanotheranostics. Small 13, 1603446 (2017).

    Article  Google Scholar 

  9. M. Alibolandi, M. Mohammadi, S.M. Taghdisi, M. Ramezani, and K. Abnous: Fabrication of aptamer decorated dextran coated nano-grapheneoxide for targeted drug delivery. Carbohydr. Polym. 155, 218 (2017).

    Article  CAS  Google Scholar 

  10. K. Hemmati, R. Sahraei, and M. Ghaemy: Synthesis and characterization of a novel magnetic molecularly imprinted polymer with incorporated graphene oxide for drug delivery. Polymer 101, 257 (2016).

    Article  CAS  Google Scholar 

  11. J. Shen, Y. Zhu, X. Yang, and C. Li: Graphene quantum dots: Emergent nanolights for bioimaging, sensors, catalysis, and photovoltaic devices. Chem. Commun. 48, 3686 (2012).

    Article  CAS  Google Scholar 

  12. H. Afsharan, B. Khalilzadeh, H. Tajalli, M. Mollabashi, F. Navaeipour, and M.R. Rashidi: A sandwich type immunosensor for ultrasensitive electrochemical quantification of p53 protein based on gold nanoparticles/graphene oxide. Electrochim. Acta 188, 153 (2016).

    Article  CAS  Google Scholar 

  13. B. Massoumi, F. Ghandomi, M. Abbasian, M. Eskandani, and M. Jaymand: Surface functionalization of graphene oxide with poly(2-hydroxyethyl methacrylate)-graft-poly(ε-caprolactone) and its electrospun nanofibers with gelatin. Appl. Phys. A: Solids Surf. 122, 1000 (2016).

    Article  Google Scholar 

  14. W. Zhang, Z. Guo, D. Huang, Z. Liu, X. Guo, and H. Zhong: Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials 32, 8555 (2011).

    Article  CAS  Google Scholar 

  15. A. Jafarizad, A. Taghizadehgh-Alehjougi, M. Eskandani, M. Hatamzadeh, M. Abbasian, R. Mohammad-Rezaei, M. Mohammadzadeh, B. Toğar, and M. Jaymand: PEGylated graphene oxide/Fe3O4 nanocomposite: Synthesis, characterization, and evaluation of its performance as de novo drug delivery nanosystem. Bio-Med. Mater. Eng. 29, 177 (2018).

    Article  CAS  Google Scholar 

  16. M. Abbasiana, M.M. Roudi, F. Mahmoodzadeh, M. Eskandani, and M. Jaymand: Chitosan-grafted-poly(methacrylic acid)/graphene oxide nanocomposite as a pH-responsive de novo cancer chemotherapy nanosystem. Int. J. Biol. Macromol. 118, 1871 (2018).

    Article  Google Scholar 

  17. Z. Xu, S. Zhu, M. Wang, Y. Li, P. Shi, and X. Huang: Delivery of paclitaxel using PEGylated graphene oxide as a nanocarrier. ACS Appl. Mater. Interfaces 7, 1355 (2015).

    Article  CAS  Google Scholar 

  18. M. Orecchioni, R. Cabizza, A. Bianco, and L.G. Delogu: Graphene as cancer theranostic tool: Progress and future challenges. Theranostics 5, 710 (2015).

    Article  CAS  Google Scholar 

  19. L. Chen, X. Zhong, X. Yi, M. Huang, P. Ning, T. Liu, C. Ge, Z. Chai, Z. Liu, and K. Yang: Radionuclide 131I labeled reduced graphene oxide for nuclear imaging guided combined radio- and photothermal therapy of cancer. Biomaterials 66, 21 (2015).

    Article  Google Scholar 

  20. K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li, and Z. Liu: Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv. Mater. 24, 1868 (2012).

    Article  CAS  Google Scholar 

  21. R.K. Thapa, Y.S. Youn, J.H. Jeong, H.G. Choi, C.S. Yong, and J.O. Kim: Graphene oxide-wrapped PEGylated liquid crystalline nanoparticles foreffective chemo-photothermal therapy of metastatic prostate cancer cells. Colloids Surf., B 143, 271 (2016).

    Article  CAS  Google Scholar 

  22. K. Yang, L. Feng, and Z. Liu: Stimuli responsive drug delivery systems based on nano-graphene for cancer therapy. Adv. Drug Deliv. Rev. 105, 228 (2016).

    Article  CAS  Google Scholar 

  23. A. Bianco: Graphene: Safe or toxic? The two faces of the medal. Angew. Chem., Int. Ed. 52, 4986 (2013).

    Article  CAS  Google Scholar 

  24. S.M. Chowdhury, C. Surhland, Z. Sanchez, P. Chaudhary, M.A.S. Kumar, S. Lee, L.A. Pena, M. Waring, B. Sitharaman, and M. Naidu: Graphene nanoribbons as a drug delivery agent for lucanthone mediated therapy of glioblastoma multiforme. Nanomed. Nanotechnol. Biol. Med. 11, 109 (2015).

    Article  CAS  Google Scholar 

  25. C. Wang, C.Y. Wu, X.J. Zhou, T. Han, X.Z. Xin, J.Y. Wu, J.Y. Zhang, and S.W. Guo: Enhancing cell nucleus accumulation and DNA cleavage activity of anti-cancer drug via graphene quantum dots. Sci. Rep. 3, 2852 (2013).

    Article  Google Scholar 

  26. B. Khalilzadeh, N. Shadjou, M. Eskandani, H. Nozad-Charoudehd, Y. Omidi, and M.R. Rashidi: A reliable self-assembled peptide based electrochemical biosensor for detection of caspase 3 activity and apoptosis. RSC Adv. 5, 58316 (2015).

    Article  CAS  Google Scholar 

  27. H. Chen, L. Shao, Q. Li, and J. Wang: Gold nanorods and their plasmon properties. Chem. Soc. Rev. 42, 2679 (2013).

    Article  CAS  Google Scholar 

  28. C.J. Murphy, J.W. Stone, P.N. Sisco, A.M. Alkilany, E.C. Goldsmith, and S.C. Baxter: Gold nanoparticles in biology: Beyond toxicity to cellular imaging. Acc. Chem. Res. 41, 1721 (2008).

    Article  CAS  Google Scholar 

  29. M.P. Melancon, W. Lu, Z. Yang, R. Zhang, Z. Cheng, A.M. Elliot, J. Stafford, T. Olson, J.Z. Zhang, and C. Li: In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol. Cancer Ther. 7, 1730 (2008).

    Article  CAS  Google Scholar 

  30. J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M.J. Welch, and Y. Xia: Gold nanocages as photothermal transducer for cancer treatment. Small 6, 811 (2010).

    Article  CAS  Google Scholar 

  31. D. Luo, K.A. Carter, D. Miranda, and J.F. Lovell: Chemophototherapy: An emerging treatment option for solid tumors. Adv. Sci. 24, 1600106 (2016).

    Google Scholar 

  32. F. Mahmoodzadeh, M. Abbasian, M. Jaymand, R. Salehi, and E. Bagherzadeh-Khajehmarjan: A novel gold-based stimuli-responsive theranostic nanomedicine for chemo-photothermal therapy of solid tumors. Mater. Sci. Eng. C 93, 880 (2018).

    Article  CAS  Google Scholar 

  33. Z. Qi, J. Shi, Z. Zhang, Y. Cao, J. Li, and S. Cao: PEGylated graphene oxide-capped gold nanorods/silica nanoparticles as multifunctional drug delivery platform with enhanced near-infrared responsiveness. Mater. Sci. Eng. C 104, 109889 (2019).

    Article  CAS  Google Scholar 

  34. Z. Zhang, J. Shi, Z. Song, X. Zhu, Y. Zhu, and S. Cao: A synergistically enhanced photothermal transition effect from mesoporous silica nanoparticles with gold nanorods wrapped in reduced graphene oxide. J. Mater. Sci. 53, 1810 (2018).

    Article  CAS  Google Scholar 

  35. S. Gurunathan, J.W. Han, A.A. Dayem, V. Eppakayala, and J.H. Kim: Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int. J. Nanomed. 7, 5901 (2012).

    Article  CAS  Google Scholar 

  36. H.K. Yang, M. Qi, L. Mo, R.M. Yang, X.D. Xu, J.F. Bao, W.J. Tang, J.T. Lin, L.M. Zhang, and X.Q. Jiang: Reduction-sensitive amphiphilic dextran derivatives as theranostic nanocarriers for chemotherapy and MR imaging. RSC Adv. 6, 114519 (2016).

    Article  CAS  Google Scholar 

  37. B. Massoumi, Z. Mozaffari, and M. Jaymand: A starch-based stimuli-responsive magnetite nanohydrogel as de novo drug delivery system. Int. J. Biol. Macromol. 117, 418 (2018).

    Article  CAS  Google Scholar 

  38. M. Jaymand, M. Lotfi, J. Barar, M. Eskandani, and H. Maleki: Novel dental nanocomposites: Fabrication, and investigation of their physicochemical, mechanical and biological properties. Bull. Mater. Sci. 41, 84 (2018).

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the partial financial support from Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran (Grant No. 980305), and Payame Noor University, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Jaymand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samadian, H., Mohammad-Rezaei, R., Jahanban-Esfahlan, R. et al. A de novo theranostic nanomedicine composed of PEGylated graphene oxide and gold nanoparticles for cancer therapy. Journal of Materials Research 35, 430–441 (2020). https://doi.org/10.1557/jmr.2020.3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.3

Navigation