Skip to main content

Advertisement

Log in

In situ graphitized hard carbon xerogel: A promising high-performance anode material for Li-ion batteries

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

To address the challenges of capacity fading and poor electronic conductivity of hard carbons as anode in Li-ion batteries (LIBs), we report here the catalytic graphitization of resorcinol–formaldehyde xerogel (RFX)-derived hard carbon via a single-step synthesis by incorporating two transition metal catalysts (Co and Ni) with different loadings (5 and 10%) at a modest temperature of 1100 °C. Loading of both the catalysts affects the extent of graphitization and other physiochemical properties that have a direct influence on the anodic performance of as graphitized RFX-derived hard carbon. A 10% Ni catalyst in RFX-derived carbon induces the highest degree of graphitization of 81.4% along with partial amorphous carbon and nickel phases. This improved crystallinity was conducive enough to facilitate rapid electron and Li-ion transfer while the amorphous carbon phase contributed to higher specific capacity, resulting in overall best anodic performance as ever reported for RFX-derived carbon. A specific capacity of 578 mAh/g obtained after 210 cycles at 0.2 C with coulombic efficiency greater than 99% confirms the potential of graphitized RFX-derived carbon as an anode for high-performance LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
TABLE 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
TABLE 2:
Figure 8:

Similar content being viewed by others

References

  1. M.S. Nazir, A.J. Mahdi, M. Bilal, H.M. Sohail, N. Ali, and H.M.N. Iqbal: Environmental impact and pollution-related challenges of renewable wind energy paradigm–a review. Sci. Total Environ. 683, 436–444 (2019).

    Article  CAS  Google Scholar 

  2. S.R. Sinsel, R.L. Riemke, and V.H. Hoffmann: Challenges and solution technologies for the integration of variable renewable energy sources–a review. Renew. Energy RENE, 11879 (2019).

    Google Scholar 

  3. R. Amirante, E. Cassone, E. Distaso, and P. Tamburrano: Overview on recent developments in energy storage: Mechanical, electrochemical and hydrogen technologies. Energy Convers. Manag132, 372–387 (2017).

    Article  CAS  Google Scholar 

  4. J.B. Goodenough: Energy storage materials: A perspective. Energy Storage Mater1, 158–161 (2015).

    Article  Google Scholar 

  5. Y. Wang, F. Zhang, W. Guo, S. Rao, P. Mao, and P. Xiao: Highly reversible lithium storage of nitrogen-doped Carbon@MnO hierarchical hollow spheres as advanced anode materials. ChemElectroChem (2019). doi:10.1002/celc.201901041.

    Google Scholar 

  6. M. Zhao, J. Xiong, Y. Yang, and J. Zhao: Template-assisted synthesis of honeycomb-like CoFe2O4/CNTs/rGO composite as remarkable anode material for Li/Na ion batteries. ChemElectroChem (2019). doi:10.1002/celc.201900800.

    Google Scholar 

  7. T. Placke, R. Kloepsch, S. Dühnen, and M. Winter: Lithium ion, lithium metal, and alternative rechargeable battery technologies: The odyssey for high energy density. J. Solid State Electrochem21, 1939–1964 (2017).

    Article  CAS  Google Scholar 

  8. M.V. Reddy, G.V. Subba Rao, and B.V.R. Chowdari: Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364–5457 (2013).

    Article  CAS  Google Scholar 

  9. D. Damodar, S.K. Kumar, S.K. Martha, and A.S. Deshpande: Nitrogen-doped graphene-like carbon nanosheets from commercial glue: Morphology, phase evolution and Li-ion battery performance. Dalton Trans47, 12218–12227 (2018).

    Article  CAS  Google Scholar 

  10. Y.P. Wu, E. Rahm, and R. Holze: Carbon anode materials for lithium ion batteries. J. Power Sources 114, 228–236 (2003).

    Article  CAS  Google Scholar 

  11. M. Yoshio, H. Wang, K. Fukud, Y. Hara, and Y. Adachi: Effect of carbon coating on electrochemical performance of treated natural graphite as lithium-ion battery anode material. J. Electrochem. Soc. 147, 1245–1250 (2000).

    Article  CAS  Google Scholar 

  12. L.S. Roselin, R. Juang, C. Hsieh, S. Sagadevan, A. Umar, R. Selvin, and H.H. Hegazy: Recent advances and perspectives of carbon-based nanostructures as anode materials for Li-ion batteries. Materials 12, 1229 (2019).

    Article  CAS  Google Scholar 

  13. W. Qi, J.G. Shapter, Q. Wu, T. Yin, G. Gao, and D. Cui: Nanostructured anode materials for lithium-ion batteries: Principle, recent progress and future perspectives. J. Mater. Chem. A 5, 19521–19540 (2017).

    Article  CAS  Google Scholar 

  14. S. Lee, D. Kang, and J. Roh: Bulk graphite: Materials and manufacturing process. Carbon Lett. 16, 135–146 (2015).

    Article  Google Scholar 

  15. P. Ridgway, H. Zheng, A.F. Bello, X. Song, S. Xun, and J. Chong: Comparison of cycling performance of lithium ion cell anode graphites. J. Electrochem. Soc. 159, A520–A524 (2012).

    Article  CAS  Google Scholar 

  16. I. Cameán, P. Lavela, J.L. Tirado, and A.B. García: On the electrochemical performance of anthracite-based graphite materials as anodes in lithium-ion batteries. Fuel 89, 986–991 (2010).

    Article  CAS  Google Scholar 

  17. B.M. Winter, J.O. Besenhard, M.E. Spahr, and P. Novak: Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10, 725–763 (1998).

    Article  CAS  Google Scholar 

  18. E. Buiel and J.R. Dahn: Li-insertion in hard carbon anode materials for Li-ion batteries. Electrochim. Acta 45, 121.130 (1999).

    Article  Google Scholar 

  19. A. Piotrowska, K. Kierzek, P. Rutkowski, and J. Machnikowski: Properties and lithium insertion behavior of hard carbons produced by pyrolysis of various polymers at 1000 ◦C. J. Anal. Appl. Pyrolysis 102, 1–6 (2013).

    Article  CAS  Google Scholar 

  20. Y. Nishi: The development of lithium ion secondary batteries. Chem. Rec. 1, 406–413 (2001).

    Article  CAS  Google Scholar 

  21. X. Wang, L. Liu, and Z. Niu: Carbon-based materials for lithium-ion capacitors. Mater. Chem. Front3, 1265–1279 (2019).

    Article  CAS  Google Scholar 

  22. A. Oya and H. Marsh: Review phenomena of catalytic graphitization. J. Mater. Sci. 17, 309–322 (1982).

    Article  CAS  Google Scholar 

  23. A. Oya and S. Otani: Catalytic graphitization of carbon by various metals. Carbon 17, 131–137 (1979).

    Article  CAS  Google Scholar 

  24. M. Sevilla and A.B. Fuertes: Fabrication of porous carbon monoliths with a graphitic frameworks. Carbon 56, 155–166 (2013).

    Article  CAS  Google Scholar 

  25. N.P. Wickramaratne, V.S. Perera, B.W. Park, M. Gao, G.W. McGimpsey, and S.D. Huang: Graphitic mesoporous carbons with embedded Prussian blue-derived iron oxide nanoparticles synthesized by soft templating and low-temperature graphitization. Chem. Mater. 25, 2803–2811 (2013).

    Article  CAS  Google Scholar 

  26. Y. Liu, Q. Liu, J. Gu, D. Kang, F. Zhou, W. Zhang, Y. Wu, and D. Zhang: Highly porous graphitic materials prepared by catalytic graphitization. Carbon 64, 132–140 (2013).

    Article  CAS  Google Scholar 

  27. T. Liu, E. Liu, R. Ding, Z. Luo, T. Hu, and Z. Li: Preparation and supercapacitive performance of clew-like porous nanocarbons derived from sucrose by catalytic graphitization. Electrochim. Acta 173, 50–58 (2015).

    Article  CAS  Google Scholar 

  28. M.N. Obrovac, X. Zhao, L.T. Burke, and R.A. Dunlap: Reversible lithium insertion in catalytically graphitized sugar carbon. Electrochem. Commun. 60, 221–224 (2015).

    Article  CAS  Google Scholar 

  29. W. Kicinski, M. Bystrzejewski, M.H. Rümmeli, and T. Gemming: Porous graphitic materials obtained from carbonization of organic xerogels doped with transition metal salts. Bull. Mater. Sci37, 141–150 (2014).

    Article  CAS  Google Scholar 

  30. E. Thompson, A. Danks, L. Bourgeois, and Z. Schnepp: Iron-catalyzed graphitization of biomass. Green Chem17, 551 (2015).

    Article  CAS  Google Scholar 

  31. N. Maksimova, O. Krivoruchko, G. Mestl, V. Zaikovskii, A. Chuvilin, A. Salanov, and E. Burgina: Catalytic synthesis of carbon nanostructures from polymer. J. Mol. Catal. A Chem. 158, 301–307 (2000).

    Article  CAS  Google Scholar 

  32. J. Hoekstra, A.M. Beale, F. Soulimani, M. Versluijs-Helder, J.W. Geus, and L.W. Jenneskens: Base metal catalyzed graphitization of cellulose: A combined Raman spectroscopy, temperature-dependent X-ray diffraction and high-resolution transmission electron microscopy study. J. Phys. Chem. C 119, 10653–10661 (2015).

    Article  CAS  Google Scholar 

  33. C.J. Thambiliyagodage, S. Ulrich, P.T. Araujo, and M.G. Bakker: Catalytic graphitization in nanocast carbon monoliths by iron, cobalt and nickel. Carbon 134, 452–463 (2018).

    Article  CAS  Google Scholar 

  34. F.J. Maldonado-Hódar, C. Moreno-Castilla, J. Rivera-Utrilla, Y. Hanzawa, and Y. Yamada: Catalytic graphitization of carbon aerogels by transition. Langmuir 16, 4367–4373 (2000).

    Article  CAS  Google Scholar 

  35. G. Hasegawa, K. Kanamori, and K. Nakanishi: Facile preparation of macroporous graphitized carbon monoliths from iron-containing resorcinol–formaldehyde gels. Mater. Lett. 76, 1–4 (2012).

    Article  CAS  Google Scholar 

  36. W. Kiciński, M. Norek, and M. Bystrzejewski: Monolithic porous graphitic carbons obtained through catalytic graphitization of carbon xerogels. J. Phys. Chem. Solids 74, 101–109 (2012).

    Article  CAS  Google Scholar 

  37. A. Gomez-Martin, J. Martinez-Fernandez, M. Ruttert, A. Heckmann, M. Winter, T. Placke, and J. Ramirez-Rico: Fe-catalyzed graphitic carbon materials from biomass resources as anodes for lithium ion batteries. ChemSusChem 11, 2776–2787 (2018).

    Article  CAS  Google Scholar 

  38. M. Kakunuri, S. Kali, and C.S. Sharma: Catalytic graphitization of resorcinol-formaldehyde xerogel and its effect on lithium ion intercalation. J. Anal. Appl. Pyrolysis 117, 317–324 (2016).

    Article  CAS  Google Scholar 

  39. Q. Yan, J. Li, X. Zhang, E.B. Hassan, C. Wang, J. Zhang, and Z. Cai: Catalytic graphitization of kraft lignin to graphene-based structures with four different transitional metals. J. Nanopart. Res. 20, 223 (2018).

    Article  CAS  Google Scholar 

  40. M.M. Gaikwad, M. Kakunuri, and C.S. Sharma: Enhanced catalytic graphitization of resorcinol formaldehyde derived carbon xerogel to improve its anodic performance for lithium ion battery. Mater. Today Commun 20, 100569 (2019).

    Article  CAS  Google Scholar 

  41. A.M. ElKhatat and S.A. Al-Muhtaseb: Advances in tailoring resorcinol-formaldehyde organic and carbon gels. Adv. Mater. 23, 2887–2903 (2011).

    Article  CAS  Google Scholar 

  42. A. Awadallah-F and S.A. Al-Muhtaseb: Novel controlled synthesis of nanoporous carbon nanorods from resorcinol-formaldehyde xerogels. Mater. Lett. 201, 181–184 (2017).

    Article  CAS  Google Scholar 

  43. C.S. Sharma, M.M. Kulkarni, A. Sharma, and M. Madou: Synthesis of carbon xerogel particles and fractal-like structures. Chem. Eng. Sci64, 1536–1543 (2009).

    Article  CAS  Google Scholar 

  44. M. Kakunuri, S. Vennamalla, and C.S. Sharma: Synthesis of carbon xerogel nanoparticles by inverse emulsion polymerization of resorcinol–formaldehyde and their use as anode materials for lithium-ion battery. RSC Adv. 5, 4747–4753 (2015).

    Article  CAS  Google Scholar 

  45. N. Rey-Raap, A. Arenillas, and J.A. Menendez: A visual validation of the combined effect of pH and dilution on the porosity of carbon xerogels. Micropor. Mesopor. Mater223, 89–93 (2016).

    Article  CAS  Google Scholar 

  46. I.D. Alonso-Buenaposada, N. Rey-Raap, E.G. Calvo, J.A. Menéndez, and A. Arenillas: Effect of methanol content in commercial formaldehyde solutions on the porosity of RF carbon xerogels. J. Non-Cryst. Solids 426, 13–18 (2015).

    Article  CAS  Google Scholar 

  47. N. Rey-Raap, E.G. Calvo, J.A. Menendez, and A. Arenillas: Exploring the potential of resorcinol-formaldehyde xerogels as thermal insulators. Micropor. Mesopor. Mater. 244, 50–54 (2017).

    Article  CAS  Google Scholar 

  48. M. Canal-Rodríguez, A. Arenillas, J.A. Menendez, D. Beneroso, and N. Rey-Raap: Carbon xerogels graphitized by microwave heating as anode materials in lithium-ion batteries. Carbon 137, 384–394 (2018).

    Article  CAS  Google Scholar 

  49. M.C. Piedboeuf, A.F. Léonard, G. Reichenauer, C. Balzer, and N. Job: How do the micropores of carbon xerogels influence their electrochemical behavior as anodes for lithium-ion batteries. Micropor. Mesopor. Mater. 275, 278–287 (2019).

    Article  CAS  Google Scholar 

  50. L.M. Malard, M.A. Pimenta, G. Dresselhaus, and M.S. Dresselhaus: Raman spectroscopy in graphene. Phys. Rep473, 51–87 (2009).

    Article  CAS  Google Scholar 

  51. V. Nguyen, H. Le, V. Nguyen, T. Ngo, D. Le, X. Nguyen, and N. Phan: Synthesis of multi-layer graphene films on copper tape by atmospheric pressure chemical vapor deposition method. Adv. Nat. Sci.: Nanosci. Nanotechnol4, 035012 (2013).

    CAS  Google Scholar 

  52. L.G. Cançado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhães-Paniago, and M.A. Pimenta: General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. App. Phys. Lett. 88, 1–4 (2006).

    Article  CAS  Google Scholar 

  53. H. Baker and H. Okamoto: ASM Handbook Alloy phase diagrams. ASM Int. 3, 2–319 (1992).

    Google Scholar 

  54. S. Dhar and N.R. Kestner: Ionization potentials of cobalt and nickel ions in the local-spin-density approximation. Phys. Rev. B 41, 803–806 (1990).

    Article  Google Scholar 

  55. Z. Fan, J. Liang, W. Yu, S. Ding, S. Cheng, G. Yang, G. Wang, Y. Xi, K. Xi, and R.V. Kumar: Ultrathin NiO nanosheets anchored on a highly ordered nanostructured carbon as an enhanced anode material for lithium ion batteries. Nano Energy 16, 152–162 (2015).

    Article  CAS  Google Scholar 

  56. H. Guo, X. Li, X. Zhang, H. Wang, Z. Wang, and W. Peng: Diffusion coefficient of lithium in artificial graphite, mesocarbon microbeads, and disordered carbon. New Carbon Mater. 22, 7–11 (2007).

    Article  CAS  Google Scholar 

  57. J. Kim, J.Y. Kim, D. Pham-Cong, S.Y. Jeong, J. Chang, J.H. Choi, P.V. Braun, and C.R. Cho: Individually carbon-coated and electrostatic-force-derived graphene-oxide-wrapped lithium titanium oxide nanofibers as anode material for lithium-ion batteries. Electrochim. Acta 199, 35–44 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the SERB Young Scientist Scheme and IMPRINT I 7035 project of MHRD and Dept. of Heavy Industries, Govt. of India, for the financial grant to carry out this work. We also acknowledge Central University, Hyderabad for Raman spectroscopy and FESEM facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayur M. Gaikwad.

Appendices

Supplementary material

To view supplementary material for this article, please visit https://doi.org/10.1557/jmr.2020.293

Conflict of interest

The authors declare no conflict of interest.

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaikwad, M.M., Sharma, C.S. In situ graphitized hard carbon xerogel: A promising high-performance anode material for Li-ion batteries. Journal of Materials Research 35, 2989–3003 (2020). https://doi.org/10.1557/jmr.2020.293

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.293

Navigation