Skip to main content
Log in

Studies on the influence of structure units on the state of ytterbium ions in TeO2-based glasses

  • Electronic, Photonic and Magnetic Materials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A simple composition of TeO2–Yb2O3 binary glass was selected as the host glass matrix for discussing the structure of tellurite glass with increasing Yb2O3 content. Raman spectra were measured to investigate the structure of the binary tellurite glasses, and upconversion and downconversion fluorescence characteristics were employed for discussing the relationship between the structural units and the state of Yb3+ in the tellurite glasses. The results suggested that the decrease of TeO4/2 in the glasses would result in the formation of Yb3+ clusters and Yb3+–O2− couple in the tellurite glasses, and then results in the decrease of cooperative upconversion and downconversion fluorescence intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. C. Gao, Z. Huang, Y. Wang, H. Zhan, L. Ni, K. Peng, Y. Li, Z. Jia, and X. Wang: Yb-doped aluminophosphosilicate laser fiber. J. Lightwave Technol. 34, 5170 (2016).

    Article  Google Scholar 

  2. M. Yuan, H. Fan, H. Li, S. Lan, S. Tie, and Z. Yang: Controlling the two-photon-induced photon cascade emission in a Gd3+/Tb3+-codoped glass for multicolor display. Sci. Rep. 6, 21091 (2016).

    Article  CAS  Google Scholar 

  3. Z. Li, Y. Wang, H. Peng, and J. Lv: Study on syntheses and properties of light-conversion glass doped with rare earth. Opt. Eng. 57, 120502 (2018).

    CAS  Google Scholar 

  4. L. Xia, Y. Yue, X. Yang, Y. Deng, C. Li, Y. Zhuang, R. Wang, W. You, and T. Liang: Facile preparation and optical properties of Te/Pb-free Y3Al5O12:Ce3+ phosphor-in-glass via a screen-printing route for high-power WLEDs. J. Eur. Ceram. Soc. 39, 3848 (2019).

    Article  CAS  Google Scholar 

  5. J. Zhao, L. Huang, S. Zhao, and S. Xu: Enhanced luminescences in Tb3+-doped germanate glass ceramic scintillators containing CaF2 nanocrystals. J. Am. Ceram. Soc. 102, 1720 (2019).

    CAS  Google Scholar 

  6. X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang: Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 µm laser. Sci. Rep. 6, 1 (2016).

    Article  Google Scholar 

  7. S. Muravyev, E. Anashkina, A. Andrianov, V. Dorofeev, S. Motorin, M. Koptev, and A. Kim: Dual-band Tm3+-doped tellurite fiber amplifier and laser at 1.9 µm and 2.3 µm. Sci. Rep. 8, 1 (2018).

    Article  CAS  Google Scholar 

  8. L. Zhang, Y. Xia, X. Shen, and W. Wei: Effects of GeO2 concentration on the absorption and fluorescence behaviors of Yb3+ in tellurite glasses. J. Lumin. 198, 364 (2018).

    Article  CAS  Google Scholar 

  9. N. Tagiara, D. Palles, E. Simandiras, V. Psycharis, A. Kyritsis, and E. Kamitsos: Synthesis, thermal and structural properties of pure TeO2 glass and zinc-tellurite glasses. J. Non-Cryst. Solids 457, 116 (2017).

    Article  CAS  Google Scholar 

  10. A. Gulenko, O. Masson, A. Berghou, D. Hamani, and P. Thomas: Atomistic simulations of TeO2-based glasses: Interatomic potentials and molecular dynamics. Phys. Chem. Chem. Phys. 16, 1–13 (2014).

    Article  Google Scholar 

  11. M-N. Garaga, U. Werner-Zwanziger, J. Zwanziger, A. DeCeanne, B. Hauke, K. Bozer, and S. Feller: Short-range structure of TeO2 glass. J. Phys. Chem. C 121, 28117 (2017).

    Article  CAS  Google Scholar 

  12. K-B. Kavaklıoğlu, S. Aydin, M. Çelikbilek, and A-E. Ersund: The TeO2–Na2O system: Thermal behavior, structural properties, and phase equilibria. Int. J. Appl. Glass Sci. 6, 406 (2015).

    Article  Google Scholar 

  13. M-A. Marple, M. Jesuit, I. Hung, Z. Gan, S. Feller, and S. Sen: Structure of TeO2 glass: Results from 2D 125Te NMR spectroscopy. J. Non-Cryst. Solids 513, 183 (2019).

    Article  CAS  Google Scholar 

  14. L. Zhang, Y. Xia, X. Shen, R. Yang, and W. Wei: Investigations on the effects of the Stark splitting on the fluorescence behaviors in Yb3+-doped silicate, tellurite, germanate, and phosphate glasses. Opt. Mater. 75, 1 (2018).

    Article  Google Scholar 

  15. L. Zhang, Y. Xia, X. Shen, and W. Wei: Compositional dependence of broadband near-infrared downconversion and upconversion of Yb3+-doped multi-component glasses. Mater. Res. Express 4, 1 (2017).

    Google Scholar 

  16. D-H. Weingarten, M-D. LaCount, J. Van De Lagemaat, G. Rumbles, M-T. Lusk, and S-E. Shaheen: Experimental demonstration of photon upconversion via cooperative energy pooling. Nat. Commun. 8, 14808 (2017).

    Article  CAS  Google Scholar 

  17. L. Feng, L. Bian, W. Ren, X. Zhang, and H. Li: Cooperative upconversion of Tb3+/Yb3+-codoped oxyfluoride glasses. Mater. Res. Bull. 89, 263 (2017).

    Article  CAS  Google Scholar 

  18. P. Babu, I. Martín, G. Venkataiah, V. Venkatramu, V. Lavín, and C. Jayasankar: Blue–green cooperative upconverted luminescence and radiative energy transfer in Yb3+-doped tungsten tellurite glass. J. Lumin. 169, 233 (2016).

    Article  CAS  Google Scholar 

  19. G. Maciel, A. Biswas, R. Kapoor, and P. Prasad: Blue cooperative upconversion in Yb3+-doped multicomponent sol–gel-processed silica glass for three-dimensional display. Appl. Phys. Lett. 76, 1978 (2000).

    Article  CAS  Google Scholar 

  20. K. Xiao and Z. Yang: Blue cooperative luminescence in Yb3+-doped barium gallogermanate glass excited at 976 nm. J. Fluoresc. 16, 755 (2006).

    Article  CAS  Google Scholar 

  21. Y. Wang, X. Zhou, J. Shen, X. Zhao, B. Wu, S. Jiang, and L. Li: Broadband near-infrared down-shifting by Yb–O charge-transfer band in Yb3+ singly doped tellurite glasses. J. Am. Ceram. Soc. 99, 115 (2016).

    Article  CAS  Google Scholar 

  22. Y. Zhuang, Y. Teng, J. Zhou, S. Ye, X. Liu, G. Lin, J. Ruan, and J. Qiu: Broadband downconversion from oxygen-deficient centers to Yb3+ in germanate glasses. J. Opt. Soc. Am. B 26, 2185 (2009).

    Article  CAS  Google Scholar 

  23. S. Ye, B. Zhu, Y. Liu, Y. Teng, G. Lin, G. Lakshminarayana, X. Fan, and J. Qiu: Conversion of near-ultraviolet radiation into visible and infrared emissions through energy transfer in Yb2O3 doped SrO–TiO2–SiO2 glasses. J. Appl. Phys. 105, 063508 (2009).

    Article  Google Scholar 

  24. T. Sekiya, N. Mochida, A. Ohtsuka, and M. Tonokawa: Raman spectra of MO1/2TeO2 (M = Li, Na, K, Rb, Cs, and Tl) glasses. J. Non-Cryst. Solids 144, 128 (1992).

    Article  CAS  Google Scholar 

  25. E-R. Barney, A-C. Hannon, D. Holland, N. Umesaki, M. Tatsumisago, R-G. Orman, and S. Feller: Terminal oxygens in amorphous TeO2. J. Phys. Chem. Lett. 4, 2312 (2013).

    Article  CAS  Google Scholar 

  26. Y. Himei, A. Osaka, T. Nanba, and Y. Miura: Coordination change of Te atoms in binary tellurite glasses. J. Non-Cryst. Solids 177, 164 (1994).

    Article  CAS  Google Scholar 

  27. T. Sekiya, N. Mochida, A. Ohtsuka, and M. Tonokawa: Normal vibrations of two polymorphic forms of TeO2 crystals and assignments of Raman peaks of pure TeO2 glass. J. Ceram. Soc. Jpn. 97, 1435 (1989).

    Article  CAS  Google Scholar 

  28. F. Costa, A. Souza, A. Langaro, J. Silva, F. Santos, M. Figueiredo, K. Yukimitu, J. Moraes, L. Nunes, and L. Andrade: Observation of a Te4+ center with broad red emission band and high fluorescence quantum efficiency in TeO2-Li2O glass. J. Lumin. 198, 24 (2018).

    Article  CAS  Google Scholar 

  29. E. Davis and N. Mott: Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22, 0903 (1970).

    Article  CAS  Google Scholar 

  30. W. Konijnendijk and J. Stevels: Structure of borate and borosilicate glasses by Raman spectroscopy, Borate Glasses. (Springer, Boston, 1978); p. 259.

    Google Scholar 

  31. S. Zhou, B. Zheng, Y. Shimotsuma, Y. Lu, Q. Guo, M. Nishi, M. Shimizu, K. Miura, K. Hirao, and J. Qiu: Heterogeneous-surface-mediated crystallization control. NPG Asia Mater. 8, 245 (2016).

    Article  Google Scholar 

  32. Q. Guo, X. Liu, and S. Zhou: Suppression of lanthanide clustering in glass by network topological constraints. J. Am. Ceram. Soc. 98, 2976 (2015).

    Article  CAS  Google Scholar 

  33. S. Zhou, Q. Guo, H. Inoue, Q. Ye, A. Masuno, B. Zheng, Y. Yu, and J. Qiu: Topological engineering of glass for modulating chemical state of dopants. Adv. Mater. 26, 7966 (2014).

    Article  CAS  Google Scholar 

  34. A-K-R. Souza, A-P. Langaro, J-R. Silva, F-B. Costa, K. Yukimitu, J-C-S. Moraes, L-A. de Oliveira Nunes, L-H. da Cunha Andrade, and S-M. Lima: On the efficient Te4+ → Yb3+ cooperative energy transfer mechanism in tellurite glasses: A potential material for luminescent solar concentrators. J. Alloys Compd. 781, 1119 (2019).

    Article  Google Scholar 

  35. H. Masai, Y. Yamada, S. Okumura, Y. Kanemitsu, and T. Yoko: Photoluminescence of a Te4+ center in zinc borate glass. Opt. Lett. 38, 3780 (2013).

    Article  CAS  Google Scholar 

  36. H. Donker, M-J. Den Exter, W-M-A. Smit, and G. Blasse: Luminescence of the Te4+ ion in ZrP2O7. J. Soild State Chem. 83, 361 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the National Natural Science Foundation of China (Grant No. 11872058).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yonggang Liu or Zhongyuan Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Lu, Z., Xu, J. et al. Studies on the influence of structure units on the state of ytterbium ions in TeO2-based glasses. Journal of Materials Research 35, 422–429 (2020). https://doi.org/10.1557/jmr.2020.28

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.28

Navigation