Abstract
A simple composition of TeO2–Yb2O3 binary glass was selected as the host glass matrix for discussing the structure of tellurite glass with increasing Yb2O3 content. Raman spectra were measured to investigate the structure of the binary tellurite glasses, and upconversion and downconversion fluorescence characteristics were employed for discussing the relationship between the structural units and the state of Yb3+ in the tellurite glasses. The results suggested that the decrease of TeO4/2 in the glasses would result in the formation of Yb3+ clusters and Yb3+–O2− couple in the tellurite glasses, and then results in the decrease of cooperative upconversion and downconversion fluorescence intensity.
Similar content being viewed by others
References
C. Gao, Z. Huang, Y. Wang, H. Zhan, L. Ni, K. Peng, Y. Li, Z. Jia, and X. Wang: Yb-doped aluminophosphosilicate laser fiber. J. Lightwave Technol. 34, 5170 (2016).
M. Yuan, H. Fan, H. Li, S. Lan, S. Tie, and Z. Yang: Controlling the two-photon-induced photon cascade emission in a Gd3+/Tb3+-codoped glass for multicolor display. Sci. Rep. 6, 21091 (2016).
Z. Li, Y. Wang, H. Peng, and J. Lv: Study on syntheses and properties of light-conversion glass doped with rare earth. Opt. Eng. 57, 120502 (2018).
L. Xia, Y. Yue, X. Yang, Y. Deng, C. Li, Y. Zhuang, R. Wang, W. You, and T. Liang: Facile preparation and optical properties of Te/Pb-free Y3Al5O12:Ce3+ phosphor-in-glass via a screen-printing route for high-power WLEDs. J. Eur. Ceram. Soc. 39, 3848 (2019).
J. Zhao, L. Huang, S. Zhao, and S. Xu: Enhanced luminescences in Tb3+-doped germanate glass ceramic scintillators containing CaF2 nanocrystals. J. Am. Ceram. Soc. 102, 1720 (2019).
X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang: Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 µm laser. Sci. Rep. 6, 1 (2016).
S. Muravyev, E. Anashkina, A. Andrianov, V. Dorofeev, S. Motorin, M. Koptev, and A. Kim: Dual-band Tm3+-doped tellurite fiber amplifier and laser at 1.9 µm and 2.3 µm. Sci. Rep. 8, 1 (2018).
L. Zhang, Y. Xia, X. Shen, and W. Wei: Effects of GeO2 concentration on the absorption and fluorescence behaviors of Yb3+ in tellurite glasses. J. Lumin. 198, 364 (2018).
N. Tagiara, D. Palles, E. Simandiras, V. Psycharis, A. Kyritsis, and E. Kamitsos: Synthesis, thermal and structural properties of pure TeO2 glass and zinc-tellurite glasses. J. Non-Cryst. Solids 457, 116 (2017).
A. Gulenko, O. Masson, A. Berghou, D. Hamani, and P. Thomas: Atomistic simulations of TeO2-based glasses: Interatomic potentials and molecular dynamics. Phys. Chem. Chem. Phys. 16, 1–13 (2014).
M-N. Garaga, U. Werner-Zwanziger, J. Zwanziger, A. DeCeanne, B. Hauke, K. Bozer, and S. Feller: Short-range structure of TeO2 glass. J. Phys. Chem. C 121, 28117 (2017).
K-B. Kavaklıoğlu, S. Aydin, M. Çelikbilek, and A-E. Ersund: The TeO2–Na2O system: Thermal behavior, structural properties, and phase equilibria. Int. J. Appl. Glass Sci. 6, 406 (2015).
M-A. Marple, M. Jesuit, I. Hung, Z. Gan, S. Feller, and S. Sen: Structure of TeO2 glass: Results from 2D 125Te NMR spectroscopy. J. Non-Cryst. Solids 513, 183 (2019).
L. Zhang, Y. Xia, X. Shen, R. Yang, and W. Wei: Investigations on the effects of the Stark splitting on the fluorescence behaviors in Yb3+-doped silicate, tellurite, germanate, and phosphate glasses. Opt. Mater. 75, 1 (2018).
L. Zhang, Y. Xia, X. Shen, and W. Wei: Compositional dependence of broadband near-infrared downconversion and upconversion of Yb3+-doped multi-component glasses. Mater. Res. Express 4, 1 (2017).
D-H. Weingarten, M-D. LaCount, J. Van De Lagemaat, G. Rumbles, M-T. Lusk, and S-E. Shaheen: Experimental demonstration of photon upconversion via cooperative energy pooling. Nat. Commun. 8, 14808 (2017).
L. Feng, L. Bian, W. Ren, X. Zhang, and H. Li: Cooperative upconversion of Tb3+/Yb3+-codoped oxyfluoride glasses. Mater. Res. Bull. 89, 263 (2017).
P. Babu, I. Martín, G. Venkataiah, V. Venkatramu, V. Lavín, and C. Jayasankar: Blue–green cooperative upconverted luminescence and radiative energy transfer in Yb3+-doped tungsten tellurite glass. J. Lumin. 169, 233 (2016).
G. Maciel, A. Biswas, R. Kapoor, and P. Prasad: Blue cooperative upconversion in Yb3+-doped multicomponent sol–gel-processed silica glass for three-dimensional display. Appl. Phys. Lett. 76, 1978 (2000).
K. Xiao and Z. Yang: Blue cooperative luminescence in Yb3+-doped barium gallogermanate glass excited at 976 nm. J. Fluoresc. 16, 755 (2006).
Y. Wang, X. Zhou, J. Shen, X. Zhao, B. Wu, S. Jiang, and L. Li: Broadband near-infrared down-shifting by Yb–O charge-transfer band in Yb3+ singly doped tellurite glasses. J. Am. Ceram. Soc. 99, 115 (2016).
Y. Zhuang, Y. Teng, J. Zhou, S. Ye, X. Liu, G. Lin, J. Ruan, and J. Qiu: Broadband downconversion from oxygen-deficient centers to Yb3+ in germanate glasses. J. Opt. Soc. Am. B 26, 2185 (2009).
S. Ye, B. Zhu, Y. Liu, Y. Teng, G. Lin, G. Lakshminarayana, X. Fan, and J. Qiu: Conversion of near-ultraviolet radiation into visible and infrared emissions through energy transfer in Yb2O3 doped SrO–TiO2–SiO2 glasses. J. Appl. Phys. 105, 063508 (2009).
T. Sekiya, N. Mochida, A. Ohtsuka, and M. Tonokawa: Raman spectra of MO1/2TeO2 (M = Li, Na, K, Rb, Cs, and Tl) glasses. J. Non-Cryst. Solids 144, 128 (1992).
E-R. Barney, A-C. Hannon, D. Holland, N. Umesaki, M. Tatsumisago, R-G. Orman, and S. Feller: Terminal oxygens in amorphous TeO2. J. Phys. Chem. Lett. 4, 2312 (2013).
Y. Himei, A. Osaka, T. Nanba, and Y. Miura: Coordination change of Te atoms in binary tellurite glasses. J. Non-Cryst. Solids 177, 164 (1994).
T. Sekiya, N. Mochida, A. Ohtsuka, and M. Tonokawa: Normal vibrations of two polymorphic forms of TeO2 crystals and assignments of Raman peaks of pure TeO2 glass. J. Ceram. Soc. Jpn. 97, 1435 (1989).
F. Costa, A. Souza, A. Langaro, J. Silva, F. Santos, M. Figueiredo, K. Yukimitu, J. Moraes, L. Nunes, and L. Andrade: Observation of a Te4+ center with broad red emission band and high fluorescence quantum efficiency in TeO2-Li2O glass. J. Lumin. 198, 24 (2018).
E. Davis and N. Mott: Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22, 0903 (1970).
W. Konijnendijk and J. Stevels: Structure of borate and borosilicate glasses by Raman spectroscopy, Borate Glasses. (Springer, Boston, 1978); p. 259.
S. Zhou, B. Zheng, Y. Shimotsuma, Y. Lu, Q. Guo, M. Nishi, M. Shimizu, K. Miura, K. Hirao, and J. Qiu: Heterogeneous-surface-mediated crystallization control. NPG Asia Mater. 8, 245 (2016).
Q. Guo, X. Liu, and S. Zhou: Suppression of lanthanide clustering in glass by network topological constraints. J. Am. Ceram. Soc. 98, 2976 (2015).
S. Zhou, Q. Guo, H. Inoue, Q. Ye, A. Masuno, B. Zheng, Y. Yu, and J. Qiu: Topological engineering of glass for modulating chemical state of dopants. Adv. Mater. 26, 7966 (2014).
A-K-R. Souza, A-P. Langaro, J-R. Silva, F-B. Costa, K. Yukimitu, J-C-S. Moraes, L-A. de Oliveira Nunes, L-H. da Cunha Andrade, and S-M. Lima: On the efficient Te4+ → Yb3+ cooperative energy transfer mechanism in tellurite glasses: A potential material for luminescent solar concentrators. J. Alloys Compd. 781, 1119 (2019).
H. Masai, Y. Yamada, S. Okumura, Y. Kanemitsu, and T. Yoko: Photoluminescence of a Te4+ center in zinc borate glass. Opt. Lett. 38, 3780 (2013).
H. Donker, M-J. Den Exter, W-M-A. Smit, and G. Blasse: Luminescence of the Te4+ ion in ZrP2O7. J. Soild State Chem. 83, 361 (1989).
Acknowledgment
This work was financially supported by the National Natural Science Foundation of China (Grant No. 11872058).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Liu, Y., Lu, Z., Xu, J. et al. Studies on the influence of structure units on the state of ytterbium ions in TeO2-based glasses. Journal of Materials Research 35, 422–429 (2020). https://doi.org/10.1557/jmr.2020.28
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2020.28