Abstract
The present work investigates the influence of sodium doping on structural, morphological, photoluminescence, linear, nonlinear (NL), and optical limiting (OL) parameters of NaxCd1−xS thin films (where x= 0.0, 0.5, 1.0, 2.5, and 5.0 wt%) deposited on glass substrates using spray pyrolysis route. X-ray diffraction and Raman analyses confirmed the hexagonal polycrystalline nature of films. Crystallite sizes were decreased from 30 to 17 nm with doping. Scanning electron microscopy (SEM) micrographs also confirmed the nanocrystalline spherical growth. Energy dispersive X-ray spectroscopy (EDS) and SEM mapping studies revealed the presence and homogeneous distribution of individual elements. Transmission of films is found to lie between 45 and 60%. Although the low doping caused the reduction of the effective band gap, higher doping caused a blue shift in band gap, with an associated reduction in crystallite sizes. The refractive index values are found within 1–2 in visible and their maximum values (in range 2.65–3.16) are observed at 2500 nm. Photoluminescence (PL) spectra showed broad emission peak at ∼520 ± 10 nm. Dielectric and NL analyses were also carried out. OL results were promising for the systematic gradual decrease of intensity from 100 to 72%, with doping for power regulating applications.
Similar content being viewed by others
References
M.A. Islam, M.S. Hossain, M.M. Aliyu, P. Chelvanathan, Q. Huda, M.R. Karim, K. Sopian, and N. Amin: Comparison of structural and optical properties of CdS thin films grown by CSVT, CBD and sputtering techniques. Energy Procedia 33, 203 (2013).
A. Tanushevski and H. Osmani: CdS thin films obtained by chemical bath deposition in presence of fluorine and the effect of annealing on their properties. Chalcogenide Lett. 15, 107 (2018).
H. Moualkia, N. Attaf, L. Hadjeris, L. Herissi, and N. Abdelmalek: Preparation and Characterization of CdS Thin Films (IEEE, Piscataway, New Jersey, US, 2012); p. 66.
M. Ouafi, B. Jaber, L. Atourki, N. Zayyoun, A. Ihlal, A. Mzerd, and L. Laânab: In situ low-temperature chemical bath deposition of CdS thin films without thickness limitation: Structural and optical properties. Int. J. Photoenergy 2018, 1 (2018).
F. Göde and S. Ünlü: Synthesis and characterization of CdS window layers for PbS thin film solar cells. Mater. Sci. Semicond. Process. 90, 92 (2019).
J. Jie, W. Zhang, Y. Jiang, X. Meng, Y. Li, and S. Lee: Photoconductive characteristics of single-crystal CdS nanoribbons. Nano Lett. 6, 1887 (2006).
W. Wondmagegn, I. Mejia, A. Salas-Villasenor, H. Stiegler, M. Quevedo-Lopez, R. Pieper, and B. Gnade: CdS thin film transistor for inverter and operational amplifier circuit applications. Microelectron. Eng. 157, 64 (2016).
Y.L. Song, Y. Li, F.Q. Zhou, P.F. Ji, X.J. Sun, M.L. Wan, and M.L. Tian: White electroluminescence from a prototypical light-emitting diode based on CdS/Si heterojunctions. Mater. Lett. 196, 8 (2017).
B-G. An, Y.W. Chang, H-R. Kim, G. Lee, M-J. Kang, J-K. Park, and J-C. Pyun: Highly sensitive photosensor based on in situ synthesized CdS nanowires. Sens. Actuators, B 221, 884 (2015).
Y. Zhao, M. Yuan, Y. Chen, Y. Huang, J. Lian, S. Cao, H. Li, and L. Wu: Size controllable preparation of sphere-based monolayer CdS thin films for white-light photodetectors. Ceram. Int. 44, 2407 (2018).
A.J. Khimani, S.H. Chaki, T.J. Malek, J.P. Tailor, S.M. Chauhan, and M.P. Deshpande: Cadmium sulphide (CdS) thin films deposited by chemical bath deposition (CBD) and dip coating techniques—A comparative study. Mater. Res. Express 5, 036406 (2018).
S. Yılmaz, İ. Polat, M. Tomakin, T. Küçükömeroğlu, S.B. Töreli, and E. Bacaksız: Sm-doped CdS thin films prepared by spray pyrolysis: A structural, optical, and electrical examination. Appl. Phys. A 124, 502 (2018).
M. Shkir, M. Anis, S.S. Shaikh, and S. AlFaify: An investigation on structural, morphological, optical and third order nonlinear properties of facilely spray pyrolysis fabricated In:CdS thin films. Superlattices Microstruct. 133, 106202 (2019).
M. Shkir, S. Shaikh, and S. AlFaify: An investigation on optical-nonlinear and optical limiting properties of CdS: An effect of Te doping concentrations for optoelectronic applications. J. Mater. Sci.: Mater. Electron. 30, 17469 (2019).
M. Shkir, I.M. Ashraf, S. AlFaify, A.M. El-Toni, M. Ahmed, and A. Khan: A noticeable effect of Pr doping on key optoelectrical properties of CdS thin films prepared using spray pyrolysis technique for high-performance photodetector applications. Ceram. Int. 46, 4652 (2019).
M. Shkir, I.M. Ashraf, K.V. Chandekar, I.S. Yahia, A. Khan, H. Algarni, and S. AlFaify: A significant enhancement in visible-light photodetection properties of chemical spray pyrolysis fabricated CdS thin films by novel Eu doping concentrations. Sens. Actuators, A 301, 111749 (2020).
M. Shkir, Z.R. Khan, M. Anis, S.S. Shaikh, and S. AlFaify: A comprehensive study of opto-electrical and nonlinear properties of Cu@CdS thin films for optoelectronics. Chin. J. Phys. 63, 51 (2020).
G. Pandey, S. Dixit, and A.K. Shrivastava: Effect of Gd3+ doping and reaction temperature on structural and optical properties of CdS nanoparticles. Mater. Sci. Eng. B 200, 59 (2015).
S. Agrawal and A. Khare: Effect of La on optical and structural properties of CdS–Se films. Arabian J. Chem. 8, 450 (2015).
M.A. Khalid and H.A. Jassem: Electrical and optical properties of polycrystalline Ag-doped CdS thin films. Acta Phys. Hung. 73, 29 (1993).
J.A. Dávila-Pintle, R. Lozada-Morales, M.R. Palomino-Merino, J.A. Rivera-Márquez, O. Portillo-Moreno, and O. Zelaya-Angel: Electrical properties of Er-doped CdS thin films. J. Appl. Phys. 101, 013712 (2007).
L. Karimi, M.E. Yazdanshenas, R. Khajavi, A. Rashidi, and M. Mirjalili: Using graphene/TiO2 nanocomposite as a new route for preparation of electroconductive, self-cleaning, antibacterial and antifungal cotton fabric without toxicity. Cellulose 21, 3813 (2014).
M. Sreenivas, G.S. Harish, and P.S. Reddy: Synthesis and Raman studies of Ce doped Cds nanoparticles. Int. J. Adv. Res. 2, 468 (2014).
S. Mageswari, L. Dhivya, B. Palanivel, and R. Murugan: Structural, morphological and optical properties of Na and K dual doped CdS thin film. J. Alloys Compd. 545, 41 (2012).
M.J. Iqbal Khan and Z. Kanwal: Investigation of optical properties of CdS for various Na concentrations for nonlinear optical applications (A DFT study). Optik 193, 162985 (2019).
M. Shkir and S. AlFaify: Tailoring the structural, morphological, optical and dielectric properties of lead iodide through Nd3+ doping. Sci. Rep. 7, 16091 (2017).
M.A. Manthrammel, A. Fatehmulla, A.M. Al-Dhafiri, A.S. Alshammari, and A. Khan: Temperature dependent surface and spectral modifications of nano V2O5 films. Opt. Spectrosc. 122, 420 (2017).
M. Shkir, M. Arif, V. Ganesh, M.A. Manthrammel, A. Singh, S.R. Maidur, P.S. Patil, I.S. Yahia, H. Algarni, and S. AlFaify: Linear, third order nonlinear and optical limiting studies on MZO/FTO thin film system fabricated by spin coating technique for electro-optic applications. J. Mater. Res. 33, 3880 (2018).
M.A. Manthrammel, V. Ganesh, M. Shkir, I.S. Yahia, and S. Alfaify: Facile synthesis of La-doped CdS nanoparticles by microwave assisted co-precipitation technique for optoelectronic application. Mater. Res. Express 6, 025022 (2018).
M. Shkir, I.S. Yahia, M. Kilany, M.M. Abutalib, S. AlFaify, and R. Darwish: Facile nanorods synthesis of KI:HAp and their structure-morphology, vibrational and bioactivity analyses for biomedical applications. Ceram. Int. 45, 50 (2019).
V. Ganesh, I. Yahia, S. AlFaify, and M. Shkir: Sn-doped ZnO nanocrystalline thin films with enhanced linear and nonlinear optical properties for optoelectronic applications. J. Phys. Chem. Solids 100, 115 (2017).
M. Gilic, J. Trajic, N. Romcevic, M. Romcevic, D.V. Timotijevic, G. Stanisic, and I.S. Yahia: Optical properties of CdS thin films. Opt. Mater. 35, 1112 (2013).
M.V. Malashchonak, A.V. Mazanik, O.V. Korolik, E.A. Streltsov, and A.I. Kulak: Influence of wide band gap oxide substrates on the photoelectrochemical properties and structural disorder of CdS nanoparticles grown by the successive ionic layer adsorption and reaction (SILAR) method. Beilstein J. Nanotechnol. 6, 2252 (2015).
V.M. Dzhagan, M.Y. Valakh, C. Himcinschi, A.G. Milekhin, D. Solonenko, N.A. Yeryukov, O.E. Raevskaya, O.L. Stroyuk, and D.R.T. Zahn: Raman and infrared phonon spectra of ultrasmall colloidal CdS nanoparticles. J. Phys. Chem. 118, 19492 (2014).
M.A. Nusimovici, M. Balkanski, and J.L. Birman: Lattice dynamics of wurtzite: CdS. II. Phys. Rev. B 1, 595 (1970).
M. Shkir and S. AlFaify: Effect of Gd3+ doping on structural, morphological, optical, dielectric, and nonlinear optical properties of high-quality PbI2 thin films for optoelectronic applications. J. Mater. Res. 34, 2765 (2019).
M. Shkir, A. Khan, A.M. El-Toni, A. Aldalbahi, I.S. Yahia, and S. AlFaify: Structural, morphological, opto-nonlinear-limiting studies on Dy:PbI2/FTO thin films derived facilely by spin coating technique for optoelectronic technology. J. Phys. Chem. Solids 130, 189 (2019).
S.B. Aziz, A.Q. Hassan, S.J. Mohammed, W.O. Karim, M. Kadir, H. Tajuddin, and N. Chan: Structural and optical characteristics of PVA: C-dot composites: Tuning the absorption of ultra violet (UV) region. Nanomaterials 9, 216 (2019).
S.B. Aziz, R.B. Marif, M. Brza, A.N. Hassan, H.A. Ahmad, Y.A. Faidhalla, and M. Kadir: Structural, thermal, morphological and optical properties of PEO filled with biosynthesized Ag nanoparticles: New insights to band gap study. Results Phys. 13, 102220 (2019).
S.B. Aziz, S.M. Mamand, S.R. Saed, R.M. Abdullah, and S.A. Hussein: New method for the development of plasmonic metal-semiconductor interface layer: Polymer composites with reduced energy band gap. J. Nanomater. 2017, 1 (2017).
R.M. Abdullah, S.B. Aziz, S.M. Mamand, A.Q. Hassan, S.A. Hussein, and M. Kadir: Reducing the crystallite size of spherulites in PEO-based polymer nanocomposites mediated by carbon nanodots and Ag nanoparticles. Nanomaterials 9, 874 (2019).
S.B. Aziz, H.M. Ahmed, A.M. Hussein, A.B. Fathulla, R.M. Wsw, and R.T. Hussein: Tuning the absorption of ultraviolet spectra and optical parameters of aluminum doped PVA based solid polymer composites. J. Mater. Sci.: Mater. Electron. 26, 8022 (2015).
S. Aziz, M. Rasheed, and H. Ahmed: Synthesis of polymer nanocomposites based on [methyl cellulose](1−x):(CuS)x (0.02 M ≤ x ≤ 0.08 M) with desired optical band gaps. Polymers 9, 194 (2017).
M. Brza, S.B. Aziz, H. Anuar, and M.H.F. Al Hazza: From green remediation to polymer hybrid fabrication with improved optical band gaps. Int. J. Mol. Sci. 20, 3910 (2019).
B.D. Viezbicke, S. Patel, B.E. Davis, and D.P. Birnie: Evaluation of the tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys. Status Solidi B 252, 1700 (2015).
A. Bedia, F.Z. Bedia, M. Aillerie, N. Maloufi, and B. Benyoucef: Influence of the thickness on optical properties of sprayed ZnO hole-blocking layers dedicated to inverted organic solar cells. Energy Procedia 50, 603 (2014).
J. Lv, K. Huang, X. Chen, J. Zhu, C. Cao, X. Song, and Z. Sun: Optical constants of Na-doped ZnO thin films by sol–gel method. Opt. Commun. 284, 2905 (2011).
İ. Polat: Effects of Na-doping on the efficiency of ZnO nanorods-based dye sensitized solar cells. J. Mater. Sci.: Mater. Electron. 25, 3721 (2014).
M.M. Aslam, S.M. Ali, A. Fatehmulla, W.A. Farooq, M. Atif, A.M. Al-Dhafiri, and M.A. Shar: Growth and characterization of layer by layer CdS–ZnS QDs on dandelion like TiO2 microspheres for QDSSC application. Mater. Sci. Semicond. Process. 36, 57 (2015).
P.P. Hankare, P.A. Chate, and D.J. Sathe: CdS thin film: Synthesis and characterization. Solid State Sci. 11, 1226 (2009).
S. Yılmaz, İ. Polat, M. Tomakin, and E. Bacaksız: A research on growth and characterization of CdS:Eu thin films. Appl. Phys. A 125, 67 (2019).
S. Yılmaz, İ. Polat, M. Tomakin, and E. Bacaksız: Determination of optimum Er-doping level to get high transparent and low resistive Cd1−xErxS thin films. J. Mater. Sci.: Mater. Electron. 30, 5662 (2019).
S. Yılmaz, Y. Atasoy, M. Tomakin, and E. Bacaksız: Comparative studies of CdS, CdS:Al, CdS:Na, and CdS:(Al–Na) thin films prepared by spray pyrolysis. Superlattices Microstruct. 88, 299 (2015).
R. Kumar, R. Das, M. Gupta, and V. Ganesan: Compositional effect of antimony on structural, optical, and photoluminescence properties of chemically deposited (Cd1−xSbx)S thin films. Superlattices Microstruct. 59, 29 (2013).
S.J. Ikhmayies and R.N. Ahmad-Bitar: Dependence of the photoluminescence of CdS:In thin films on the excitation power of the laser. J. Lumin. 149, 240 (2014).
G. Murali, D. Amaranatha Reddy, G. Giribabu, R.P. Vijayalakshmi, and R. Venugopal: Room temperature ferromagnetism in Mn doped CdS nanowires. J. Alloys Compd. 581, 849 (2013).
M. Aslam Manthrammel, A.M. Aboraia, M. Shkir, I.S. Yahia, M.A. Assiri, H.Y. Zahran, V. Ganesh, S. AlFaify, and A.V. Soldatov: Optical analysis of nanostructured rose bengal thin films using Kramers–Kronig approach: New trend in laser power attenuation. Opt. Laser Technol. 112, 207 (2019).
S.B. Aziz, M.A. Rasheed, A.M. Hussein, and H.M. Ahmed: Fabrication of polymer blend composites based on [PVA-PVP](1−x):(Ag2S)x (0.01 ≤ x ≤ 0.03) with small optical band gaps: Structural and optical properties. Mater. Sci. Semicond. Process. 71, 197 (2017).
S. Aziz: Morphological and optical characteristics of chitosan(1−x):Cuox (4 ≤ x ≤ 12) based polymer nano-composites: Optical dielectric loss as an alternative method for tauc’s model. Nanomaterials 7, 444 (2017).
K.S. Ojha and R.L. Srivastava: Dielectric and impedance study of optimized cadmium sulphide thin film. Chalcogenide Lett. 10, 1 (2013).
M.A. Assiri, M. Aslam Manthrammel, A.M. Aboraia, I.S. Yahia, H.Y. Zahran, V. Ganesh, M. Shkir, S. AlFaify, and A.V. Soldatov: Kramers–Kronig calculations for linear and nonlinear optics of nanostructured methyl violet (CI-42535): New trend in laser power attenuation using dyes. Phys. B Condens. Matter 552, 62 (2019).
H.S. Bolarinwa, M.U. Onuu, A.Y. Fasasi, S.O. Alayande, L.O. Animasahun, I.O. Abdulsalami, O.G. Fadodun, and I.A. Egunjobi: Determination of optical parameters of zinc oxide nanofibre deposited by electrospinning technique. Journal of Taibah University for Science 11, 1245 (2017).
M.M. El-Desoky, G.A. El-Barbary, D.E. El Refaey, and F. El-Tantawy: Optical constants and dispersion parameters of La-doped ZnS nanocrystalline films prepared by sol–gel technique. Optik 168, 764 (2018).
M. Frumar, J. Jedelský, B. Frumarova, T. Wagner, and M. Hrdlička: Optically and thermally induced changes of structure, linear and non-linear optical properties of chalcogenides thin films. J. Non-Cryst. Solids 326, 399 (2003).
H. Ticha and L. Tichy: Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J. Optoelectron. Adv. Mater. 4, 381 (2002).
C.C. Wang: Empirical relation between the linear and the third-order nonlinear optical susceptibilities. Phys. Rev. B 2, 2045 (1970).
J. Wynne: Nonlinear optical spectroscopy of χ3 in LiNbO3. Phys. Rev. Lett. 29, 650 (1972).
V. Ganesh, M. Shkir, S. AlFaify, I. Yahia, H. Zahran, and A.A. El-Rehim: Study on structural, linear and nonlinear optical properties of spin coated N doped CdO thin films for optoelectronic applications. J. Mol. Struct. 1150, 523 (2017).
D. Hanna: Handbook of Laser Science and Technology, 35, 12 (Journal of Modern Optics, 1988).
L.W. Tutt and A. Kost: Optical limiting performance of C60 and C70 solutions. Nature 356, 225 (1992).
G.L. Wood, W.W. Clark, M.J. Miller, G.J. Salamo, and E.J. Sharp: Evaluation of passive optical limiters and switches. In Materials for Optical Switches, Isolators, and Limiters, vol. 1105 (International Society for Optics and Photonics, 1989); p. 154. https://doi.org/10.1117/12.960622 Event: SPIE 1989 Technical Symposium on Aerospace Sensing, 1989, Orlando, FL, USA.
L.G. Holmen and M.W. Haakestad: Optical limiting properties and z-scan measurements of carbon disulfide at 2.05 µm wavelength. J. Opt. Soc. Am. B 33, 1655 (2016).
P. Poornesh, P.K. Hegde, G. Umesh, M. Manjunatha, K. Manjunatha, and A. Adhikari: Nonlinear optical and optical power limiting studies on a new thiophene-based conjugated polymer in solution and solid PMMA matrix. Opt. Laser Technol. 42, 230 (2010).
Z.R. Khan, M. Shkir, V. Ganesh, S. AlFaify, I.S. Yahia, and H.Y. Zahran: Linear and nonlinear optics of CBD grown nanocrystalline F doped CdS thin films for optoelectronic applications: An effect of thickness. J. Electron. Mater. 47, 5386 (2018).
M. Shkir, M. Arif, V. Ganesh, M.A. Manthrammel, A. Singh, I.S. Yahia, S.R. Maidur, P.S. Patil, and S. AlFaify: Investigation on structural, linear, nonlinear and optical limiting properties of sol–gel derived nanocrystalline Mg doped ZnO thin films for optoelectronic applications. J. Mol. Struct. 1173, 375 (2018).
Z.R. Khan, M. Shkir, A.S. Alshammari, V. Ganesh, S. AlFaify, and M. Gandouzi: Structural, linear and third order nonlinear optical properties of sol–gel grown Ag–CdS nanocrystalline thin films. J. Electron. Mater. 48, 1122 (2019).
I. El Radaf, T.A. Hameed, and I. Yahia: Synthesis and characterization of F-doped CdS thin films by spray pyrolysis for photovoltaic applications. Mater. Res. Express 5, 066416 (2018).
M. Arif, M. Shkir, S. AlFaify, A. Sanger, P.M. Vilarinho, and A. Singh: Linear and nonlinear optical investigations of N:ZnO/ITO thin films system for opto-electronic functions. Opt. Laser Technol. 112, 539 (2019).
F. Abrinaei and M. Shirazi: Nonlinear optical investigations on Al doping ratio in ZnO thin film under pulsed Nd:YAG laser irradiation. J. Mater. Sci.: Mater. Electron. 28, 17541 (2017).
Acknowledgments
Authors express their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant number R.G.P. 2/41/40.
Author information
Authors and Affiliations
Corresponding authors
Supplementary material
Rights and permissions
About this article
Cite this article
Manthrammel, M.A., Shkir, M., Shafik, S. et al. A systematic investigation on physical properties of spray pyrolysis–fabricated CdS thin films for opto-nonlinear applications: An effect of Na doping. Journal of Materials Research 35, 410–421 (2020). https://doi.org/10.1557/jmr.2020.26
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2020.26