Skip to main content

Advertisement

Log in

A systematic investigation on physical properties of spray pyrolysis–fabricated CdS thin films for opto-nonlinear applications: An effect of Na doping

  • Electronic, Photonic and Magnetic Materials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The present work investigates the influence of sodium doping on structural, morphological, photoluminescence, linear, nonlinear (NL), and optical limiting (OL) parameters of NaxCd1−xS thin films (where x= 0.0, 0.5, 1.0, 2.5, and 5.0 wt%) deposited on glass substrates using spray pyrolysis route. X-ray diffraction and Raman analyses confirmed the hexagonal polycrystalline nature of films. Crystallite sizes were decreased from 30 to 17 nm with doping. Scanning electron microscopy (SEM) micrographs also confirmed the nanocrystalline spherical growth. Energy dispersive X-ray spectroscopy (EDS) and SEM mapping studies revealed the presence and homogeneous distribution of individual elements. Transmission of films is found to lie between 45 and 60%. Although the low doping caused the reduction of the effective band gap, higher doping caused a blue shift in band gap, with an associated reduction in crystallite sizes. The refractive index values are found within 1–2 in visible and their maximum values (in range 2.65–3.16) are observed at 2500 nm. Photoluminescence (PL) spectra showed broad emission peak at 520 ± 10 nm. Dielectric and NL analyses were also carried out. OL results were promising for the systematic gradual decrease of intensity from 100 to 72%, with doping for power regulating applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. M.A. Islam, M.S. Hossain, M.M. Aliyu, P. Chelvanathan, Q. Huda, M.R. Karim, K. Sopian, and N. Amin: Comparison of structural and optical properties of CdS thin films grown by CSVT, CBD and sputtering techniques. Energy Procedia 33, 203 (2013).

    Article  CAS  Google Scholar 

  2. A. Tanushevski and H. Osmani: CdS thin films obtained by chemical bath deposition in presence of fluorine and the effect of annealing on their properties. Chalcogenide Lett. 15, 107 (2018).

    CAS  Google Scholar 

  3. H. Moualkia, N. Attaf, L. Hadjeris, L. Herissi, and N. Abdelmalek: Preparation and Characterization of CdS Thin Films (IEEE, Piscataway, New Jersey, US, 2012); p. 66.

    Google Scholar 

  4. M. Ouafi, B. Jaber, L. Atourki, N. Zayyoun, A. Ihlal, A. Mzerd, and L. Laânab: In situ low-temperature chemical bath deposition of CdS thin films without thickness limitation: Structural and optical properties. Int. J. Photoenergy 2018, 1 (2018).

    Article  CAS  Google Scholar 

  5. F. Göde and S. Ünlü: Synthesis and characterization of CdS window layers for PbS thin film solar cells. Mater. Sci. Semicond. Process. 90, 92 (2019).

    Article  CAS  Google Scholar 

  6. J. Jie, W. Zhang, Y. Jiang, X. Meng, Y. Li, and S. Lee: Photoconductive characteristics of single-crystal CdS nanoribbons. Nano Lett. 6, 1887 (2006).

    Article  CAS  Google Scholar 

  7. W. Wondmagegn, I. Mejia, A. Salas-Villasenor, H. Stiegler, M. Quevedo-Lopez, R. Pieper, and B. Gnade: CdS thin film transistor for inverter and operational amplifier circuit applications. Microelectron. Eng. 157, 64 (2016).

    Article  CAS  Google Scholar 

  8. Y.L. Song, Y. Li, F.Q. Zhou, P.F. Ji, X.J. Sun, M.L. Wan, and M.L. Tian: White electroluminescence from a prototypical light-emitting diode based on CdS/Si heterojunctions. Mater. Lett. 196, 8 (2017).

    Article  CAS  Google Scholar 

  9. B-G. An, Y.W. Chang, H-R. Kim, G. Lee, M-J. Kang, J-K. Park, and J-C. Pyun: Highly sensitive photosensor based on in situ synthesized CdS nanowires. Sens. Actuators, B 221, 884 (2015).

    Article  CAS  Google Scholar 

  10. Y. Zhao, M. Yuan, Y. Chen, Y. Huang, J. Lian, S. Cao, H. Li, and L. Wu: Size controllable preparation of sphere-based monolayer CdS thin films for white-light photodetectors. Ceram. Int. 44, 2407 (2018).

    Article  CAS  Google Scholar 

  11. A.J. Khimani, S.H. Chaki, T.J. Malek, J.P. Tailor, S.M. Chauhan, and M.P. Deshpande: Cadmium sulphide (CdS) thin films deposited by chemical bath deposition (CBD) and dip coating techniques—A comparative study. Mater. Res. Express 5, 036406 (2018).

    Article  CAS  Google Scholar 

  12. S. Yılmaz, İ. Polat, M. Tomakin, T. Küçükömeroğlu, S.B. Töreli, and E. Bacaksız: Sm-doped CdS thin films prepared by spray pyrolysis: A structural, optical, and electrical examination. Appl. Phys. A 124, 502 (2018).

    Article  CAS  Google Scholar 

  13. M. Shkir, M. Anis, S.S. Shaikh, and S. AlFaify: An investigation on structural, morphological, optical and third order nonlinear properties of facilely spray pyrolysis fabricated In:CdS thin films. Superlattices Microstruct. 133, 106202 (2019).

    Article  CAS  Google Scholar 

  14. M. Shkir, S. Shaikh, and S. AlFaify: An investigation on optical-nonlinear and optical limiting properties of CdS: An effect of Te doping concentrations for optoelectronic applications. J. Mater. Sci.: Mater. Electron. 30, 17469 (2019).

    CAS  Google Scholar 

  15. M. Shkir, I.M. Ashraf, S. AlFaify, A.M. El-Toni, M. Ahmed, and A. Khan: A noticeable effect of Pr doping on key optoelectrical properties of CdS thin films prepared using spray pyrolysis technique for high-performance photodetector applications. Ceram. Int. 46, 4652 (2019).

    Article  CAS  Google Scholar 

  16. M. Shkir, I.M. Ashraf, K.V. Chandekar, I.S. Yahia, A. Khan, H. Algarni, and S. AlFaify: A significant enhancement in visible-light photodetection properties of chemical spray pyrolysis fabricated CdS thin films by novel Eu doping concentrations. Sens. Actuators, A 301, 111749 (2020).

    Article  CAS  Google Scholar 

  17. M. Shkir, Z.R. Khan, M. Anis, S.S. Shaikh, and S. AlFaify: A comprehensive study of opto-electrical and nonlinear properties of Cu@CdS thin films for optoelectronics. Chin. J. Phys. 63, 51 (2020).

    Article  CAS  Google Scholar 

  18. G. Pandey, S. Dixit, and A.K. Shrivastava: Effect of Gd3+ doping and reaction temperature on structural and optical properties of CdS nanoparticles. Mater. Sci. Eng. B 200, 59 (2015).

    Article  CAS  Google Scholar 

  19. S. Agrawal and A. Khare: Effect of La on optical and structural properties of CdS–Se films. Arabian J. Chem. 8, 450 (2015).

    Article  CAS  Google Scholar 

  20. M.A. Khalid and H.A. Jassem: Electrical and optical properties of polycrystalline Ag-doped CdS thin films. Acta Phys. Hung. 73, 29 (1993).

    CAS  Google Scholar 

  21. J.A. Dávila-Pintle, R. Lozada-Morales, M.R. Palomino-Merino, J.A. Rivera-Márquez, O. Portillo-Moreno, and O. Zelaya-Angel: Electrical properties of Er-doped CdS thin films. J. Appl. Phys. 101, 013712 (2007).

    Article  CAS  Google Scholar 

  22. L. Karimi, M.E. Yazdanshenas, R. Khajavi, A. Rashidi, and M. Mirjalili: Using graphene/TiO2 nanocomposite as a new route for preparation of electroconductive, self-cleaning, antibacterial and antifungal cotton fabric without toxicity. Cellulose 21, 3813 (2014).

    Article  CAS  Google Scholar 

  23. M. Sreenivas, G.S. Harish, and P.S. Reddy: Synthesis and Raman studies of Ce doped Cds nanoparticles. Int. J. Adv. Res. 2, 468 (2014).

    Google Scholar 

  24. S. Mageswari, L. Dhivya, B. Palanivel, and R. Murugan: Structural, morphological and optical properties of Na and K dual doped CdS thin film. J. Alloys Compd. 545, 41 (2012).

    Article  CAS  Google Scholar 

  25. M.J. Iqbal Khan and Z. Kanwal: Investigation of optical properties of CdS for various Na concentrations for nonlinear optical applications (A DFT study). Optik 193, 162985 (2019).

    Article  CAS  Google Scholar 

  26. M. Shkir and S. AlFaify: Tailoring the structural, morphological, optical and dielectric properties of lead iodide through Nd3+ doping. Sci. Rep. 7, 16091 (2017).

    Article  CAS  Google Scholar 

  27. M.A. Manthrammel, A. Fatehmulla, A.M. Al-Dhafiri, A.S. Alshammari, and A. Khan: Temperature dependent surface and spectral modifications of nano V2O5 films. Opt. Spectrosc. 122, 420 (2017).

    Article  CAS  Google Scholar 

  28. M. Shkir, M. Arif, V. Ganesh, M.A. Manthrammel, A. Singh, S.R. Maidur, P.S. Patil, I.S. Yahia, H. Algarni, and S. AlFaify: Linear, third order nonlinear and optical limiting studies on MZO/FTO thin film system fabricated by spin coating technique for electro-optic applications. J. Mater. Res. 33, 3880 (2018).

    Article  CAS  Google Scholar 

  29. M.A. Manthrammel, V. Ganesh, M. Shkir, I.S. Yahia, and S. Alfaify: Facile synthesis of La-doped CdS nanoparticles by microwave assisted co-precipitation technique for optoelectronic application. Mater. Res. Express 6, 025022 (2018).

    Article  CAS  Google Scholar 

  30. M. Shkir, I.S. Yahia, M. Kilany, M.M. Abutalib, S. AlFaify, and R. Darwish: Facile nanorods synthesis of KI:HAp and their structure-morphology, vibrational and bioactivity analyses for biomedical applications. Ceram. Int. 45, 50 (2019).

    Article  CAS  Google Scholar 

  31. V. Ganesh, I. Yahia, S. AlFaify, and M. Shkir: Sn-doped ZnO nanocrystalline thin films with enhanced linear and nonlinear optical properties for optoelectronic applications. J. Phys. Chem. Solids 100, 115 (2017).

    Article  CAS  Google Scholar 

  32. M. Gilic, J. Trajic, N. Romcevic, M. Romcevic, D.V. Timotijevic, G. Stanisic, and I.S. Yahia: Optical properties of CdS thin films. Opt. Mater. 35, 1112 (2013).

    Article  CAS  Google Scholar 

  33. M.V. Malashchonak, A.V. Mazanik, O.V. Korolik, E.A. Streltsov, and A.I. Kulak: Influence of wide band gap oxide substrates on the photoelectrochemical properties and structural disorder of CdS nanoparticles grown by the successive ionic layer adsorption and reaction (SILAR) method. Beilstein J. Nanotechnol. 6, 2252 (2015).

    Article  CAS  Google Scholar 

  34. V.M. Dzhagan, M.Y. Valakh, C. Himcinschi, A.G. Milekhin, D. Solonenko, N.A. Yeryukov, O.E. Raevskaya, O.L. Stroyuk, and D.R.T. Zahn: Raman and infrared phonon spectra of ultrasmall colloidal CdS nanoparticles. J. Phys. Chem. 118, 19492 (2014).

    CAS  Google Scholar 

  35. M.A. Nusimovici, M. Balkanski, and J.L. Birman: Lattice dynamics of wurtzite: CdS. II. Phys. Rev. B 1, 595 (1970).

    Article  Google Scholar 

  36. M. Shkir and S. AlFaify: Effect of Gd3+ doping on structural, morphological, optical, dielectric, and nonlinear optical properties of high-quality PbI2 thin films for optoelectronic applications. J. Mater. Res. 34, 2765 (2019).

    Article  CAS  Google Scholar 

  37. M. Shkir, A. Khan, A.M. El-Toni, A. Aldalbahi, I.S. Yahia, and S. AlFaify: Structural, morphological, opto-nonlinear-limiting studies on Dy:PbI2/FTO thin films derived facilely by spin coating technique for optoelectronic technology. J. Phys. Chem. Solids 130, 189 (2019).

    Article  CAS  Google Scholar 

  38. S.B. Aziz, A.Q. Hassan, S.J. Mohammed, W.O. Karim, M. Kadir, H. Tajuddin, and N. Chan: Structural and optical characteristics of PVA: C-dot composites: Tuning the absorption of ultra violet (UV) region. Nanomaterials 9, 216 (2019).

    Article  CAS  Google Scholar 

  39. S.B. Aziz, R.B. Marif, M. Brza, A.N. Hassan, H.A. Ahmad, Y.A. Faidhalla, and M. Kadir: Structural, thermal, morphological and optical properties of PEO filled with biosynthesized Ag nanoparticles: New insights to band gap study. Results Phys. 13, 102220 (2019).

    Article  Google Scholar 

  40. S.B. Aziz, S.M. Mamand, S.R. Saed, R.M. Abdullah, and S.A. Hussein: New method for the development of plasmonic metal-semiconductor interface layer: Polymer composites with reduced energy band gap. J. Nanomater. 2017, 1 (2017).

    Article  CAS  Google Scholar 

  41. R.M. Abdullah, S.B. Aziz, S.M. Mamand, A.Q. Hassan, S.A. Hussein, and M. Kadir: Reducing the crystallite size of spherulites in PEO-based polymer nanocomposites mediated by carbon nanodots and Ag nanoparticles. Nanomaterials 9, 874 (2019).

    Article  CAS  Google Scholar 

  42. S.B. Aziz, H.M. Ahmed, A.M. Hussein, A.B. Fathulla, R.M. Wsw, and R.T. Hussein: Tuning the absorption of ultraviolet spectra and optical parameters of aluminum doped PVA based solid polymer composites. J. Mater. Sci.: Mater. Electron. 26, 8022 (2015).

    CAS  Google Scholar 

  43. S. Aziz, M. Rasheed, and H. Ahmed: Synthesis of polymer nanocomposites based on [methyl cellulose](1−x):(CuS)x (0.02 M ≤ x ≤ 0.08 M) with desired optical band gaps. Polymers 9, 194 (2017).

    Article  CAS  Google Scholar 

  44. M. Brza, S.B. Aziz, H. Anuar, and M.H.F. Al Hazza: From green remediation to polymer hybrid fabrication with improved optical band gaps. Int. J. Mol. Sci. 20, 3910 (2019).

    Article  CAS  Google Scholar 

  45. B.D. Viezbicke, S. Patel, B.E. Davis, and D.P. Birnie: Evaluation of the tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys. Status Solidi B 252, 1700 (2015).

    Article  CAS  Google Scholar 

  46. A. Bedia, F.Z. Bedia, M. Aillerie, N. Maloufi, and B. Benyoucef: Influence of the thickness on optical properties of sprayed ZnO hole-blocking layers dedicated to inverted organic solar cells. Energy Procedia 50, 603 (2014).

    Article  CAS  Google Scholar 

  47. J. Lv, K. Huang, X. Chen, J. Zhu, C. Cao, X. Song, and Z. Sun: Optical constants of Na-doped ZnO thin films by sol–gel method. Opt. Commun. 284, 2905 (2011).

    Article  CAS  Google Scholar 

  48. İ. Polat: Effects of Na-doping on the efficiency of ZnO nanorods-based dye sensitized solar cells. J. Mater. Sci.: Mater. Electron. 25, 3721 (2014).

    CAS  Google Scholar 

  49. M.M. Aslam, S.M. Ali, A. Fatehmulla, W.A. Farooq, M. Atif, A.M. Al-Dhafiri, and M.A. Shar: Growth and characterization of layer by layer CdS–ZnS QDs on dandelion like TiO2 microspheres for QDSSC application. Mater. Sci. Semicond. Process. 36, 57 (2015).

    Article  CAS  Google Scholar 

  50. P.P. Hankare, P.A. Chate, and D.J. Sathe: CdS thin film: Synthesis and characterization. Solid State Sci. 11, 1226 (2009).

    Article  CAS  Google Scholar 

  51. S. Yılmaz, İ. Polat, M. Tomakin, and E. Bacaksız: A research on growth and characterization of CdS:Eu thin films. Appl. Phys. A 125, 67 (2019).

    Article  CAS  Google Scholar 

  52. S. Yılmaz, İ. Polat, M. Tomakin, and E. Bacaksız: Determination of optimum Er-doping level to get high transparent and low resistive Cd1−xErxS thin films. J. Mater. Sci.: Mater. Electron. 30, 5662 (2019).

    Google Scholar 

  53. S. Yılmaz, Y. Atasoy, M. Tomakin, and E. Bacaksız: Comparative studies of CdS, CdS:Al, CdS:Na, and CdS:(Al–Na) thin films prepared by spray pyrolysis. Superlattices Microstruct. 88, 299 (2015).

    Article  CAS  Google Scholar 

  54. R. Kumar, R. Das, M. Gupta, and V. Ganesan: Compositional effect of antimony on structural, optical, and photoluminescence properties of chemically deposited (Cd1−xSbx)S thin films. Superlattices Microstruct. 59, 29 (2013).

    Article  CAS  Google Scholar 

  55. S.J. Ikhmayies and R.N. Ahmad-Bitar: Dependence of the photoluminescence of CdS:In thin films on the excitation power of the laser. J. Lumin. 149, 240 (2014).

    Article  CAS  Google Scholar 

  56. G. Murali, D. Amaranatha Reddy, G. Giribabu, R.P. Vijayalakshmi, and R. Venugopal: Room temperature ferromagnetism in Mn doped CdS nanowires. J. Alloys Compd. 581, 849 (2013).

    Article  CAS  Google Scholar 

  57. M. Aslam Manthrammel, A.M. Aboraia, M. Shkir, I.S. Yahia, M.A. Assiri, H.Y. Zahran, V. Ganesh, S. AlFaify, and A.V. Soldatov: Optical analysis of nanostructured rose bengal thin films using Kramers–Kronig approach: New trend in laser power attenuation. Opt. Laser Technol. 112, 207 (2019).

    Article  CAS  Google Scholar 

  58. S.B. Aziz, M.A. Rasheed, A.M. Hussein, and H.M. Ahmed: Fabrication of polymer blend composites based on [PVA-PVP](1−x):(Ag2S)x (0.01 ≤ x ≤ 0.03) with small optical band gaps: Structural and optical properties. Mater. Sci. Semicond. Process. 71, 197 (2017).

    Article  CAS  Google Scholar 

  59. S. Aziz: Morphological and optical characteristics of chitosan(1−x):Cuox (4 ≤ x ≤ 12) based polymer nano-composites: Optical dielectric loss as an alternative method for tauc’s model. Nanomaterials 7, 444 (2017).

    Article  CAS  Google Scholar 

  60. K.S. Ojha and R.L. Srivastava: Dielectric and impedance study of optimized cadmium sulphide thin film. Chalcogenide Lett. 10, 1 (2013).

    CAS  Google Scholar 

  61. M.A. Assiri, M. Aslam Manthrammel, A.M. Aboraia, I.S. Yahia, H.Y. Zahran, V. Ganesh, M. Shkir, S. AlFaify, and A.V. Soldatov: Kramers–Kronig calculations for linear and nonlinear optics of nanostructured methyl violet (CI-42535): New trend in laser power attenuation using dyes. Phys. B Condens. Matter 552, 62 (2019).

    Article  CAS  Google Scholar 

  62. H.S. Bolarinwa, M.U. Onuu, A.Y. Fasasi, S.O. Alayande, L.O. Animasahun, I.O. Abdulsalami, O.G. Fadodun, and I.A. Egunjobi: Determination of optical parameters of zinc oxide nanofibre deposited by electrospinning technique. Journal of Taibah University for Science 11, 1245 (2017).

    Article  Google Scholar 

  63. M.M. El-Desoky, G.A. El-Barbary, D.E. El Refaey, and F. El-Tantawy: Optical constants and dispersion parameters of La-doped ZnS nanocrystalline films prepared by sol–gel technique. Optik 168, 764 (2018).

    Article  CAS  Google Scholar 

  64. M. Frumar, J. Jedelský, B. Frumarova, T. Wagner, and M. Hrdlička: Optically and thermally induced changes of structure, linear and non-linear optical properties of chalcogenides thin films. J. Non-Cryst. Solids 326, 399 (2003).

    Article  CAS  Google Scholar 

  65. H. Ticha and L. Tichy: Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J. Optoelectron. Adv. Mater. 4, 381 (2002).

    CAS  Google Scholar 

  66. C.C. Wang: Empirical relation between the linear and the third-order nonlinear optical susceptibilities. Phys. Rev. B 2, 2045 (1970).

    Article  Google Scholar 

  67. J. Wynne: Nonlinear optical spectroscopy of χ3 in LiNbO3. Phys. Rev. Lett. 29, 650 (1972).

    Article  CAS  Google Scholar 

  68. V. Ganesh, M. Shkir, S. AlFaify, I. Yahia, H. Zahran, and A.A. El-Rehim: Study on structural, linear and nonlinear optical properties of spin coated N doped CdO thin films for optoelectronic applications. J. Mol. Struct. 1150, 523 (2017).

    Article  CAS  Google Scholar 

  69. D. Hanna: Handbook of Laser Science and Technology, 35, 12 (Journal of Modern Optics, 1988).

    Google Scholar 

  70. L.W. Tutt and A. Kost: Optical limiting performance of C60 and C70 solutions. Nature 356, 225 (1992).

    Article  CAS  Google Scholar 

  71. G.L. Wood, W.W. Clark, M.J. Miller, G.J. Salamo, and E.J. Sharp: Evaluation of passive optical limiters and switches. In Materials for Optical Switches, Isolators, and Limiters, vol. 1105 (International Society for Optics and Photonics, 1989); p. 154. https://doi.org/10.1117/12.960622 Event: SPIE 1989 Technical Symposium on Aerospace Sensing, 1989, Orlando, FL, USA.

  72. L.G. Holmen and M.W. Haakestad: Optical limiting properties and z-scan measurements of carbon disulfide at 2.05 µm wavelength. J. Opt. Soc. Am. B 33, 1655 (2016).

    Article  CAS  Google Scholar 

  73. P. Poornesh, P.K. Hegde, G. Umesh, M. Manjunatha, K. Manjunatha, and A. Adhikari: Nonlinear optical and optical power limiting studies on a new thiophene-based conjugated polymer in solution and solid PMMA matrix. Opt. Laser Technol. 42, 230 (2010).

    Article  CAS  Google Scholar 

  74. Z.R. Khan, M. Shkir, V. Ganesh, S. AlFaify, I.S. Yahia, and H.Y. Zahran: Linear and nonlinear optics of CBD grown nanocrystalline F doped CdS thin films for optoelectronic applications: An effect of thickness. J. Electron. Mater. 47, 5386 (2018).

    Article  CAS  Google Scholar 

  75. M. Shkir, M. Arif, V. Ganesh, M.A. Manthrammel, A. Singh, I.S. Yahia, S.R. Maidur, P.S. Patil, and S. AlFaify: Investigation on structural, linear, nonlinear and optical limiting properties of sol–gel derived nanocrystalline Mg doped ZnO thin films for optoelectronic applications. J. Mol. Struct. 1173, 375 (2018).

    Article  CAS  Google Scholar 

  76. Z.R. Khan, M. Shkir, A.S. Alshammari, V. Ganesh, S. AlFaify, and M. Gandouzi: Structural, linear and third order nonlinear optical properties of sol–gel grown Ag–CdS nanocrystalline thin films. J. Electron. Mater. 48, 1122 (2019).

    Article  CAS  Google Scholar 

  77. I. El Radaf, T.A. Hameed, and I. Yahia: Synthesis and characterization of F-doped CdS thin films by spray pyrolysis for photovoltaic applications. Mater. Res. Express 5, 066416 (2018).

    Article  CAS  Google Scholar 

  78. M. Arif, M. Shkir, S. AlFaify, A. Sanger, P.M. Vilarinho, and A. Singh: Linear and nonlinear optical investigations of N:ZnO/ITO thin films system for opto-electronic functions. Opt. Laser Technol. 112, 539 (2019).

    Article  CAS  Google Scholar 

  79. F. Abrinaei and M. Shirazi: Nonlinear optical investigations on Al doping ratio in ZnO thin film under pulsed Nd:YAG laser irradiation. J. Mater. Sci.: Mater. Electron. 28, 17541 (2017).

    CAS  Google Scholar 

Download references

Acknowledgments

Authors express their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant number R.G.P. 2/41/40.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohd. Shkir or S. AlFaify.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manthrammel, M.A., Shkir, M., Shafik, S. et al. A systematic investigation on physical properties of spray pyrolysis–fabricated CdS thin films for opto-nonlinear applications: An effect of Na doping. Journal of Materials Research 35, 410–421 (2020). https://doi.org/10.1557/jmr.2020.26

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.26

Navigation