Skip to main content

Advertisement

Log in

Large effect of structural variations in the columnar silicon electrode on energy storage capacity and electrode structural integrity in Li-ion cells

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Silicon electrodes with the columnar macroporous structure were investigated to determine the effect of variations in the columnar pore morphology on lithiation and energy storage capacity in Li-ion cells. Several variants of macroporous Si columnar electrodes were electrochemically cycled against the Li reference electrode. The changes in macro-pore size and Si wall thickness of the columnar architecture greatly affected the cyclic Li storage and discharge capacities. A strong correlation of the Li-storage capacity with the ratio of Si wall thickness to pore diameter is found to exist. Specifically, one columnar Si electrode with an optimum macroporous structure exhibited a very high reversible specific capacity of ~1250 mAh/g (total capacity 1.2 mAh/cm2) for over 200 cycles. Electron microscopy revealed that the high reversible Li-storage capacity is due to the macropores accommodating the change in volume of lithiation and providing nearly complete reconstruction of Si walls upon delithiation. The present observations can lead to practical, high-capacity, and damage-resistant Si electrodes for Li-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE 1:
TABLE 2:
Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

Similar content being viewed by others

References

  1. A.M. Wilson and J.R. Dahn: Lithium insertion in carbons containing nanodispersed silicon. J. Electrochem. Soc. 142, 326 (1995).

    Article  CAS  Google Scholar 

  2. S. Bourderau, T. Brousse, and D.M. Schleich: Amorphous silicon as a possible anode material for Li-ion batteries. J. Power Sources 81, 233 (1999).

    Article  Google Scholar 

  3. H. Li, X. Huang, L. Chen, Z. Wu, and Y. Liang: A high capacity nano Si composite anode material for lithium rechargeable batteries. Electrochem. Solid-State Lett. 2, 547 (1999).

    Article  CAS  Google Scholar 

  4. T.D. Hatchard and J.R. Dahn: In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J. Electrochem. Soc. 151, A838 (2004).

    Article  CAS  Google Scholar 

  5. J.O. Besenhard, J. Yang, and M. Winter: Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J. Power Sources 68, 87 (1997).

    Article  CAS  Google Scholar 

  6. J.H. Ryu, J.W. Kim, Y.-E. Sung, and S.M. Oh: Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem. Solid-State Lett. 7, A306 (2004).

    Article  CAS  Google Scholar 

  7. K.-L. Lee, J.-Y. Jung, S.-W. Lee, H.-S. Moon, and J.-W. Park: Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries. J. Power Sources 129, 270 (2004).

    Article  CAS  Google Scholar 

  8. J.P. Maranchi, A.F. Hepp, and P.N. Kumta: High capacity, reversible silicon thin-film anodes for lithium-ion batteries. Electrochem. Solid-State Lett. 6, A198 (2003).

    Article  CAS  Google Scholar 

  9. C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, and Y. Cui: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31 (2007).

    Article  Google Scholar 

  10. K. Peng, J. Jie, W. Zhang, and S.-T. Lee: Silicon nanowires for rechargeable lithium-ion battery anodes. Appl. Phys. Lett. 93, 033105 (2008).

    Article  Google Scholar 

  11. C.K. Chan, R.N. Patel, M.J. O'Connell, B.A. Korgel, and Y. Cui: Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano 4, 1443 (2010).

    Article  CAS  Google Scholar 

  12. L.-F. Cui, R. Ruffo, C.K. Chan, H. Peng, and Y. Cui: Crystalline-amorphous core−shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 9, 491 (2008).

    Article  Google Scholar 

  13. L.-F. Cui, Y. Yang, C.-M. Hsu, and Y. Cui: Carbon−silicon core−shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett. 9, 3370 (2009).

    Article  CAS  Google Scholar 

  14. M. Ge, X. Fang, J. Rong, and C. Zhou: Review of porous silicon preparation and its application for lithium-ion battery anodes. Nanotechnology 24, 422001 (2013).

    Article  CAS  Google Scholar 

  15. B.M. Bang, J. Lee, H. Kim, J. Cho, and S. Park: High-performance macroporous bulk silicon anodes synthesized by template-free chemical etching. Adv. Energy Mater. 2, 873 (2012).

    Article  Google Scholar 

  16. J.L. Goldman, B.R. Long, A.A. Gewirth, and R.G. Nuzzo: Strain anisotropies and self-limiting capacities in single-crystalline 3D silicon microstructures: Models for high energy density lithium-ion battery anodes. Adv. Func. Mater. 21, 2412 (2011).

    Article  CAS  Google Scholar 

  17. G.V. Li, E.V. Astrova, A.M. Rumyantsev, V.B. Voronkov, A.V. Parfen'eva, V.A. Tolmachev, T.L. Kulova, and A.M. Skundin: Microstructured silicon anodes for lithium-ion batteries. Russ. J. Electrochem. 51, 899 (2015).

    Article  CAS  Google Scholar 

  18. M. Madou: Fundamentals of Microfabrication (CRC Press, Boca Raton, FL, USA, 2002); pp. 191–193.

    Google Scholar 

  19. M.J. Sailor: Porous Silicon in Practice (Wiley-VCH, NY, USA, 2007); pp. 1–244.

    Google Scholar 

  20. L. Sun, F. Wang, T. Su, and H. Du: Room-temperature solution synthesis of mesoporous silicon for lithium ion battery anodes. ACS Appl. Mater. Interfaces 9, 40386 (2017).

    Article  CAS  Google Scholar 

  21. J.B. Cook, H.-S. Kim, T.C. Lin, S. Robbennolt, E. Detsi, B.S. Dunn, and S.H. Tolbert: Tuning porosity and surface area in mesoporous silicon for application in Li-ion battery electrodes. ACS Appl. Mater. Interfaces 9, 19063 (2017).

    Article  CAS  Google Scholar 

  22. Y. Zhao, X. Liu, H. Li, T. Zhai, and H. Zhou: Hierarchical micro/nano porous silicon Li-ion battery anodes. Chem. Commun. 48, 50–79 (2012).

    Google Scholar 

  23. H.C. Shin, J.A. Corno, J.L. Gole, and M. Liu: Porous silicon negative electrodes for rechargeable lithium batteries. J. Power Sources 139, 314 (2005).

    Article  CAS  Google Scholar 

  24. M. Thakur, M. Isaacson, S.L. Sinsabaugh, M.S. Wong, and S.L. Biswal: Gold-coated porous silicon films as anodes for lithium ion batteries. J. Power Sources 205, 426 (2012).

    Article  CAS  Google Scholar 

  25. M. Thakur, S.L. Sinsabaugh, M.J. Isaacson, M.S. Wong, and S.L. Biswal: Inexpensive method for producing macroporous silicon particulates (MPSPs) with pyrolyzed polyacrylonitrile for lithium ion batteries. Sci. Rep. 2, 795 (2012).

    Article  Google Scholar 

  26. J. Zhu, C. Gladden, N. Liu, Y. Cui, and X. Zhang: Nanoporous silicon networks as anodes for lithium ion batteries. Phys. Chem. Chem. Phys. 15, 440 (2013).

    Article  CAS  Google Scholar 

  27. P. Limthongkul, Y.I. Jang, N.J. Dudney, and Y.-M. Chiang: Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage. Acta Mater. 51, 1103 (2003).

    Article  CAS  Google Scholar 

  28. X. Sun, H. Huang, K. Chu, and Y. Zhuang: Anodized macroporous silicon anode for integration of lithium-ion batteries on chips. J. Electron. Mater. 41, 2369 (2012).

    Article  CAS  Google Scholar 

  29. Y.M. Lee, J.Y. Lee, H.-T. Shim, J.K. Lee, and J.-K. Park: SEI layer formation on amorphous Si thin electrode during precycling. J. Electrochem. Soc. 154, A515 (2007).

    Article  CAS  Google Scholar 

  30. R.A. Huggins: Energy Storage, 2nd ed. (Springer, NY, USA, 2010); pp. 163–164.

    Book  Google Scholar 

  31. D. Kang, J.A. Corno, J.L. Gole, and H. Shin: Microstructured nanopore-walled porous silicon as an anode material for rechargeable lithium batteries. J. Electrochem. Soc. 155, A276 (2008).

    Article  CAS  Google Scholar 

  32. H. Ouyang, M. Archer, P.M. Fauchet, H. Ouyang, M. Christophersen, R. Viard, B.L. Miller, and P.M. Fauchet: Macroporous silicon microcavities for macromolecule detection. In Frontiers in Surface Nanophotonics, D. L. Andrews and Z. Gaburro, eds. (Springer, New York, 2007), pp. 49–57.

    Chapter  Google Scholar 

  33. P. Bettotti, Z. Gaburro, L.D. Negro, and L. Pavesi: New progress on p-type macroporous silicon electrodissolution. Mater. Res. Soc. Symp. Proc. 722, 449 (2002).

    Article  CAS  Google Scholar 

  34. E.E. Underwood: Quantitative Stereology (Addison-Wesley Publishing Company, NY, USA, 1970); pp. 82–83.

    Google Scholar 

Download references

Acknowldgements

A major part of this research was supported by the DE-BES award DE-SC0019056, with some initial support from the award DE-SC0008681. The authors thank the DOE-BES Neutron Scattering program for the support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.S. Ravi Chandran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vadlamani, B., Jagannathan, M., Palmer, J. et al. Large effect of structural variations in the columnar silicon electrode on energy storage capacity and electrode structural integrity in Li-ion cells. Journal of Materials Research 35, 2976–2988 (2020). https://doi.org/10.1557/jmr.2020.266

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.266

Navigation