Skip to main content
Log in

Contact formation of C60 to thin films of formamidinium tin iodide

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Lead-free perovskite layers may provide a good alternative to the commonly used lead-halide-based perovskite absorber layers in photovoltaics. Energy level alignment of the active semiconductor with contact layers is a key factor in device performance. Kelvin probe force microscopy was used during vapor deposition of C60 onto formamidinium tin iodide to investigate contact formation with detailed local resolution of these materials that are significant for photovoltaic cells. Significant differences dependent on the growth rate of C60 were detected. Sufficiently high deposition rates were essential to reach compact C60 films needed for good contact. A space charge layer larger than 90 nm within the C60 layer was established without indication of interfacial dipoles. The present analysis gives a clear indication of a well-functioning contact of fullerenes to formamidinium tin iodide that is suitable for the use in photovoltaic devices provided that thin compact fullerene films are formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:

Similar content being viewed by others

References

  1. _https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200406.pdf.

  2. L. Dou, Y.M. Yang, J. You, Z. Hong, W-H. Chang, G. Li, and Y. Yang: Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 5, 5404 (2014).

    Article  CAS  Google Scholar 

  3. Q. Lin, A. Armin, P.L. Burn, and P. Meredith: Filterless narrowband visible photodetectors. Nat. Photonics 9, 687 (2015).

    Article  CAS  Google Scholar 

  4. Z-K. Tan, R.S. Moghaddam, M.L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L.M. Pazos, D. Credgington, F. Hanusch, T. Bein, H.J. Snaith, and R.H. Friend: Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687 (2014).

    Article  CAS  Google Scholar 

  5. A. Abate: Perovskite solar cells go lead free. Joule 1, 659 (2017).

    Article  CAS  Google Scholar 

  6. B. Hailegnaw, S. Kirmayer, E. Edri, G. Hodes, and D. Cahen: Rain on methylammonium lead iodide based perovskites: Possible environmental effects of perovskite solar cells. J. Phys. Chem. Lett. 6, 1543 (2015).

    Article  CAS  Google Scholar 

  7. L. Serrano-Lujan, N. Espinosa, T.T. Larsen-Olsen, J. Abad, A. Urbina, and F.C. Krebs: Tin- and lead-based perovskite solar cells under scrutiny. Adv. Energy Mater. 5, 1501119 (2015).

    Article  CAS  Google Scholar 

  8. A.H. Slavney, T. Hu, A.M. Lindenberg, and H.I. Karunadasa: A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 138, 2138 (2016).

    Article  CAS  Google Scholar 

  9. R. Kentsch, M. Scholz, J. Horn, D. Schlettwein, K. Oum, and T. Lenzer: Exciton dynamics and electron–phonon coupling affect the photovoltaic performance of the Cs2AgBiBr6 double perovskite. J. Phys. Chem. C 122, 25940 (2018).

    Article  CAS  Google Scholar 

  10. N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A-A. Haghighirad, A. Sadhanala, G.E. Eperon, S.K. Pathak, M.B. Johnston, A. Petrozza, L.M. Herz, and H.J. Snaith: Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061 (2014).

    Article  CAS  Google Scholar 

  11. W. Ke and M.G. Kanatzidis: Prospects for low-toxicity lead-free perovskite solar cells. Nat. Commun. 10, 965 (2019).

    Article  CAS  Google Scholar 

  12. X. He, T. Wu, X. Liu, Y. Wang, X. Meng, J. Wu, T. Noda, X. Yang, Y. Moritomo, H. Segawa, and L. Han: Highly efficient tin perovskite solar cells achieved in a wide oxygen concentration range. J. Mater. Chem. A8, 2760 (2020).

    Article  Google Scholar 

  13. X. Jiang, F. Wang, Q. Wei, H. Li, Y. Shang, W. Zhou, C. Wang, P. Cheng, Q. Chen, L. Chen, and Z. Ning: Ultra-high open-circuit voltage of tin perovskite solar cells via an electron transporting layer design. Nat. Commun. 11, 1245 (2020).

    Article  CAS  Google Scholar 

  14. S. Gupta, D. Cahen, and G. Hodes: How SnF2 impacts the material properties of lead-free tin perovskites. J. Phys. Chem. C 122, 13926 (2018).

    Article  CAS  Google Scholar 

  15. C.C. Stoumpos, C.D. Malliakas, and M.G. Kanatzidis: Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019 (2013).

    Article  CAS  Google Scholar 

  16. R. Nishikubo, N. Ishida, Y. Katsuki, A. Wakamiya, and A. Saeki: Minute-scale degradation and shift of valence-band maxima of (CH3NH3)SnI3 and HC(NH2)2SnI3 perovskites upon air exposure. J. Phys. Chem. C 121, 19650 (2017).

    Article  CAS  Google Scholar 

  17. W. Liao, D. Zhao, Y. Yu, C.R. Grice, C. Wang, A.J. Cimaroli, P. Schulz, W. Meng, K. Zhu, R-G. Xiong, and Y. Yan: Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22. Adv. Mater. 28, 9333 (2016).

    Article  CAS  Google Scholar 

  18. G. Xing, M.H. Kumar, W.K. Chong, X. Liu, Y. Cai, H. Ding, M. Asta, M. Grätzel, S. Mhaisalkar, N. Mathews, and T.C. Sum: Solution-processed tin-based perovskite for near-infrared lasing. Adv. Mater. 28, 8191 (2016).

    Article  CAS  Google Scholar 

  19. L. Ma, F. Hao, C.C. Stoumpos, B.T. Phelan, M.R. Wasielewski, and M.G. Kanatzidis: Carrier diffusion lengths of over 500 nm in lead-free perovskite CH3NH3SnI3 films. J. Am. Chem. Soc. 138, 14750 (2016).

    Article  CAS  Google Scholar 

  20. S.J. Lee, S.S. Shin, Y.C. Kim, D. Kim, T.K. Ahn, J.H. Noh, J. Seo, and S.I. Seok: Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF(2)-Pyrazine complex. J. Am. Chem. Soc. 138, 3974 (2016).

    Article  CAS  Google Scholar 

  21. M.H. Kumar, S. Dharani, W.L. Leong, P.P. Boix, R.R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S.G. Mhaisalkar, and N. Mathews: Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv. Mater. 26, 7122 (2014).

    Article  CAS  Google Scholar 

  22. Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang, Z. Shi, B. Li, X. Jiang, L. Zhang, L.N. Quan, R. Quintero-Bermudez, B.R. Sutherland, Q. Mi, E.H. Sargent, and Z. Ning: Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance. J. Am. Chem. Soc. 139, 6693 (2017).

    Article  CAS  Google Scholar 

  23. S. Shao, J. Liu, G. Portale, H-H. Fang, G.R. Blake, G.H. Ten Brink, L.J.A. Koster, and M.A. Loi: Highly Reproducible Sn-Based Hybrid Perovskite Solar Cells with 9% Efficiency. Adv. Energy Mater. 7, 1702019 (2017).

    Google Scholar 

  24. J. Horn, M. Scholz, K. Oum, T. Lenzer, and D. Schlettwein: Influence of phenylethylammonium iodide as additive in the formamidinium tin iodide perovskite on interfacial characteristics and charge carrier dynamics. APL Mater. 7, 31112 (2019).

    Article  CAS  Google Scholar 

  25. K. Chen, P. Wu, W. Yang, R. Su, D. Luo, X. Yang, Y. Tu, R. Zhu, and Q. Gong: Low-dimensional perovskite interlayer for highly efficient lead-free formamidinium tin iodide perovskite solar cells. Nano Energy 49, 411 (2018).

    Article  CAS  Google Scholar 

  26. T. Yokoyama, Y. Nishitani, Y. Miyamoto, S. Kusumoto, R. Uchida, T. Matsui, K. Kawano, T. Sekiguchi, and Y. Kaneko: Improving the open-circuit voltage of Sn-based perovskite solar cells by band alignment at the electron transport layer/perovskite layer interface. ACS Appl. Mater. Interfaces 12, 27131 (2020).

    Google Scholar 

  27. A.M. Boehm, T. Liu, S.M. Park, A. Abtahi, and K.R. Graham: Influence of surface ligands on energetics at FASnI3/C60 interfaces and their impact on photovoltaic performance. ACS Appl. Mater. Interfaces 12, 5209 (2020).

    Article  CAS  Google Scholar 

  28. W. Melitz, J. Shen, A.C. Kummel, and S. Lee: Kelvin probe force microscopy and its application. Surf. Sci. Rep. 66, 1 (2011).

    Article  CAS  Google Scholar 

  29. A. Dymshits, A. Henning, G. Segev, Y. Rosenwaks, and L. Etgar: The electronic structure of metal oxide/organo metal halide perovskite junctions in perovskite based solar cells. Sci. Rep. 5, 8704 (2015).

    Article  CAS  Google Scholar 

  30. S. Panigrahi, S. Jana, T. Calmeiro, D. Nunes, R. Martins, and E. Fortunato: Imaging the anomalous charge distribution inside CsPbBr3 perovskite quantum dots sensitized solar cells. ACS Nano 11, 10214 (2017).

    Article  CAS  Google Scholar 

  31. I.M. Hermes, Y. Hou, V.W. Bergmann, C.J. Brabec, and S.A.L. Weber: The interplay of contact layers: How the electron transport layer influences interfacial recombination and hole extraction in perovskite solar cells. J. Phys. Chem. Lett. 9, 6249 (2018).

    Article  CAS  Google Scholar 

  32. C-S. Jiang, M. Yang, Y. Zhou, B. To, S.U. Nanayakkara, J.M. Luther, W. Zhou, J.J. Berry, J. van de Lagemaat, N.P. Padture, K. Zhu, and M.M. Al-Jassim: Carrier separation and transport in perovskite solar cells studied by nanometre-scale profiling of electrical potential. Nat. Commun. 6, 8397 (2015).

    Article  CAS  Google Scholar 

  33. V.W. Bergmann, S.A.L. Weber, F. Javier Ramos, M.K. Nazeeruddin, M. Grätzel, D. Li, A.L. Domanski, I. Lieberwirth, S. Ahmad, and R. Berger: Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell. Nat. Commun. 5, 5001 (2014).

    Article  CAS  Google Scholar 

  34. S.A.L. Weber, I.M. Hermes, S-H. Turren-Cruz, C. Gort, V.W. Bergmann, L. Gilson, A. Hagfeldt, M. Graetzel, W. Tress, and R. Berger: How the formation of interfacial charge causes hysteresis in perovskite solar cells. Energy Environ. Sci. 11, 2404 (2018).

    Article  CAS  Google Scholar 

  35. Y. Yuan, T. Li, Q. Wang, J. Xing, A. Gruverman, and J. Huang: Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells. Sci. Adv. 3, e1602164 (2017).

    Article  CAS  Google Scholar 

  36. S.T. Birkhold, J.T. Precht, R. Giridharagopal, G.E. Eperon, L. Schmidt-Mende, and D.S. Ginger: Direct observation and quantitative analysis of mobile Frenkel defects in metal halide perovskites using scanning Kelvin probe microscopy. J. Phys. Chem. C 122, 12633 (2018).

    Article  CAS  Google Scholar 

  37. B.P. Nguyen, H.R. Jung, J. Kim, and W. Jo: Enhanced carrier transport over grain boundaries in lead-free CH3NH3Sn(I1-x Brx)3 (0≤x≤1) perovskite solar cells. Nanotechnology 30, 314005 (2019).

    Article  CAS  Google Scholar 

  38. B.P. Nguyen, H.R. Jung, K.Y. Ryu, K. Kim, and W. Jo: Effects of organic cations on carrier transport at the interface between perovskites and electron transport layers in (FA,MA)SnI3 solar cells. J. Phys. Chem. C 123, 30833 (2019).

    Article  CAS  Google Scholar 

  39. G. Albrecht, C. Geis, J.M. Herr, J. Ruhl, R. Göttlich, and D. Schlettwein: Electroluminescence and contact formation of 1-(pyridin-2-yl)-3-(quinolin-2-yl)imidazo[1,5-a]quinoline thin films. Org. Electron. 65, 321 (2019).

    Article  CAS  Google Scholar 

  40. S. Tao, I. Schmidt, G. Brocks, J. Jiang, I. Tranca, K. Meerholz, and S. Olthof: Absolute energy level positions in tin- and lead-based halide perovskites. Nat. Commun. 10, 2560 (2019).

    Article  CAS  Google Scholar 

  41. J. Xi, Z. Wu, B. Jiao, H. Dong, C. Ran, C. Piao, T. Lei, T-B. Song, W. Ke, T. Yokoyama, X. Hou, and M.G. Kanatzidis: Multichannel interdiffusion driven FASnI3 film formation using aqueous hybrid salt/polymer solutions toward flexible lead-free perovskite solar cells. Adv. Mater. 29, 1606964 (2017).

    Article  CAS  Google Scholar 

  42. H. Ishii, N. Hayashi, E. Ito, Y. Washizu, K. Sugi, Y. Kimura, M. Niwano, Y. Ouchi, and K. Seki: Kelvin probe study of band bending at organic semiconductor/metal interfaces: Examination of Fermi level alignment. Phys. Status Solidi A 201, 1075 (2004).

    Article  CAS  Google Scholar 

  43. S.C. Veenstra, A. Heeres, G. Hadziioannou, G.A. Sawatzky, and H.T. Jonkman: On interface dipole layers between C60 and Ag or Au. Appl. Phys. A 75, 661 (2002).

    Article  CAS  Google Scholar 

  44. T. Yokoyama, D.H. Cao, C.C. Stoumpos, T-B. Song, Y. Sato, S. Aramaki, and M.G. Kanatzidis: Overcoming short-circuit in lead-free CH3NH3SnI3 perovskite solar cells via kinetically controlled gas-solid reaction film fabrication process. J. Phys. Chem. Lett. 7, 776 (2016).

    Article  CAS  Google Scholar 

  45. Y. Dang, Y. Zhou, X. Liu, D. Ju, S. Xia, H. Xia, and X. Tao: Formation of hybrid perovskite tin iodide single crystals by top-seeded solution growth. Angew. Chem. Int. Ed. 55, 3447 (2016).

    Article  CAS  Google Scholar 

  46. X. Liu, K. Yan, D. Tan, X. Liang, H. Zhang, and W. Huang: Solvent engineering improves efficiency of lead-free tin-based hybrid perovskite solar cells beyond 9%. ACS Energy Lett. 3, 2701 (2018).

    Article  CAS  Google Scholar 

  47. M.A. Kamarudin, D. Hirotani, Z. Wang, K. Hamada, K. Nishimura, Q. Shen, T. Toyoda, S. Iikubo, T. Minemoto, K. Yoshino, and S. Hayase: Suppression of charge carrier Recombination in lead-free tin halide perovskite via Lewis base post-treatment. J. Phys. Chem. Lett. 10, 5277 (2019).

    Article  CAS  Google Scholar 

  48. T. Liu, K. Chen, Q. Hu, R. Zhu, and Q. Gong: Inverted perovskite solar cells: Progresses and perspectives. Adv. Energy Mater. 6, 1600457 (2016).

    Article  CAS  Google Scholar 

  49. D. Chen and D. Sarid: Growth of C60 films on silicon surfaces. Surf. Sci. 318, 74 (1994).

    Article  CAS  Google Scholar 

  50. P. Schulz, D. Cahen, and A. Kahn: Halide perovskites: Is it all about the interfaces? Chem. Rev. 119, 3349 (2019).

    Article  CAS  Google Scholar 

  51. M. Shibuta, K. Yamagiwa, T. Eguchi, and A. Nakajima: Imaging and spectromicroscopy of photocarrier electron dynamics in C60 fullerene thin films. Appl. Phys. Lett. 109, 203111 (2016).

    Article  CAS  Google Scholar 

  52. J.P. Colinge and C.A. Colinge: Physics of Semiconductor Devices (Kluwer Academic Publishers, Boston, MA, 2002).

    Google Scholar 

  53. P. Schulz, L.L. Whittaker-Brooks, B.A. MacLeod, D.C. Olson, Y-L. Loo, and A. Kahn: Electronic level alignment in inverted organometal perovskite solar cells. Adv. Mater. Interfaces 2, 1400532 (2015).

    Article  CAS  Google Scholar 

  54. M. Saliba, J-P. Correa-Baena, C.M. Wolff, M. Stolterfoht, N. Phung, S. Albrecht, D. Neher, and A. Abate: How to make over 20% efficient perovskite solar cells in regular (n–i–p) and inverted (p–i–n) architectures. Chem. Mater. 30, 4193 (2018).

    Google Scholar 

  55. W. Gao, C. Ran, J. Li, H. Dong, B. Jiao, L. Zhang, X. Lan, X. Hou, and Z. Wu: Robust stability of efficient lead-free formamidinium tin iodide perovskite solar cells realized by structural regulation. J. Phys. Chem. Lett. 9, 6999 (2018).

    Article  CAS  Google Scholar 

  56. E. Jokar, C-H. Chien, C-M. Tsai, A. Fathi, and E.W-G. Diau: Robust tin-based perovskite solar cells with hybrid organic cations to attain efficiency approaching 10%. Adv. Mater. 31, 1804835 (2019).

    Article  CAS  Google Scholar 

  57. P.A. Fernández Garrillo, B. Grévin, N. Chevalier, and Ł. Borowik: Calibrated work function mapping by Kelvin probe force microscopy. Rev. Sci. Instrum. 89, 43702 (2018).

    Article  CAS  Google Scholar 

  58. S.J. Sque, R. Jones, and P.R. Briddon: The transfer doping of graphite and graphene. Phys. Status Solidi A204, 3078 (2007).

    Article  CAS  Google Scholar 

  59. G. Li, B. Mao, F. Lan, and L. Liu: Practical aspects of single-pass scan Kelvin probe force microscopy. Rev. Sci. Instrum. 83, 113701 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support by Deutsche Forschungsgemeinschaft (DFG) via SCHL 340/21-3 and RTG 2204. We are also grateful to C. Geis for providing the estimation for the lateral resolution of the KPFM measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derck Schlettwein.

Appendices

Supporting information

Additional results on the spatial resolution and referencing of the KPFM measurements, on the growth and work function of C60 on HOPG and on the stability of C60 deposited on FASnI3 while storing under vacuum conditions as well as X-ray diffraction of a thin film of FASnI3 are provided.

Supplementary material

To view supplementary material for this article, please visit https://doi.org/10.1557/jmr.2020.263.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schlettwein, D., Horn, J. Contact formation of C60 to thin films of formamidinium tin iodide. Journal of Materials Research 35, 2897–2904 (2020). https://doi.org/10.1557/jmr.2020.263

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.263

Navigation