Skip to main content
Log in

Energy conversion systems: Molecular architecture engineering of metal precursors and their applications to vapor phase and solution routes

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A careful engineering of the central metal coordination spheres provides adducts with excellent properties for application as precursors in vapor phase and solution processes. The family of precursors under study concerns the fluorinated metal-organic β-diketonates of alkaline, alkaline-earth and rare-earth metals adducted with a polyether, with general formula M(hfa)n·L (M = Ca, Na, Y, Yb, Er, Tm; Hhfa = 1,1,1,5,5,5 hexafluoroacetylacetone, L = diglyme or tetraglyme). Mass transport properties, such as volatility and thermal stability, of these adducts have been deeply analyzed through thermogravimetric analysis and differential scanning calorimetric measurements. These properties are rationalized in relation to the metal coordination sphere in the precursors and their applications. In particular, the precursors under focus have been applied to metal organic chemical vapor deposition and a combined sol–gel/spin-coating approach. Both methods allow us to obtain selectively and reproducibly CaF2 and NaYF4 phases with several combinations of lanthanide doping ions, using a proper mixture of fluorinated precursors. A careful optimization of both synthetic strategies is the key point for the production of different lanthanide-doped binary and multicomponent fluoride films, i.e., CaF2:Yb3+,Er3+; CaF2:Yb3+,Tm3+; CaF2:Yb3+,Er3+,Tm3+ and NaYF4:Yb3+,Er3+; NaYF4:Yb3+,Tm3+, with suitable morphologies, compositions and crystalline structures. The films show very promising upconversion properties, thus pointing to their appealing applications in photovoltaic systems and white light emission devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Scheme 1:
Figure 4:
TABLE 1:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:
Figure 12:
Figure 13:

Similar content being viewed by others

References

  1. D. Ma, Y. Shen, T. Su, J. Zhao, N. Ur Rahman, Z. Xie, F. Shi, S. Zheng, Y. Zhang, and Z. Chi: Performance enhancement in up-conversion nanoparticle-embedded perovskite solar cells by harvesting near-infrared sunlight. Mater. Chem. Front. 10, 2058–2065 (2019).

    Article  Google Scholar 

  2. J. Du, Y. An, C. Zhang, C. Zhu, X. Li, and D. Ma: Photonic design and electrical evaluation of dual-functional solar cells for energy conversion and display applications. Nanoscale Res. Lett. 14, 1–9 (2019).

    Article  CAS  Google Scholar 

  3. H. Kwon, F. Marques Mota, K. Chung, Y.J. Jang, J.K. Hyun, J. Lee, and D.H. Kim: Enhancing solar light-driven photocatalytic activity of mesoporous carbon-TiO2 hybrid films via upconversion coupling. ACS Sustain. Chem. Eng. 6, 1310–1317 (2018).

    Article  CAS  Google Scholar 

  4. M. Zhang, M. Zuo, C. Wang, Z. Li, Q. Cheng, J. Huang, Z. Wang, and Z. Liu: Monitoring neuroinflammation with an HOCl-activatable and blood–brain barrier permeable upconversion nanoprobe. Anal. Chem. 92, 5569–5576 (2020).

    Article  CAS  Google Scholar 

  5. L. Liang, D.B.L. Teh, N.D. Dinh, W. Chen, Q. Chen, Y. Wu, S. Chowdhury, A. Yamanaka, T.C. Sum, and C.H. Chen: Upconversion amplification through dielectric superlensing modulation. Nat. Commun. 10, 1–9 (2019).

    Article  CAS  Google Scholar 

  6. A.A. Lyapin, P.A. Ryabochkina, S.V. Gushchin, M.N. Zharkov, A.S. Ermakov, V.M. Kyashkin, S.V. Prytkov, and A.V. Atanova: Characteristics of upconversion luminescence of CaF2:Er powders excited by 1.5-μm laser radiation. Opt. Spectrosc. 128, 200–206 (2020).

    Article  CAS  Google Scholar 

  7. Q. Zhao, J. Zhao, M. Tao, C. Wang, X. Zeng, Y. Hu, S. Wang, M. Zeng, W. Zhou, H. Gu, and Y. Li: Controllable planar electrodeposition of NaYF4: Yb3+, Er3+ thin films with efficient upconverting fluorescence. J. Lumin. 214, 116580 (2019).

    Article  CAS  Google Scholar 

  8. M. Kaczmarek: Lanthanide-sensitized luminescence and chemiluminescence in the systems containing most often used medicines: A review. J. Lumin. 222, 117174 (2020).

    Article  CAS  Google Scholar 

  9. D. Lu, C. Mao, S.K. Cho, S. Ahn, and W. Park: Experimental demonstration of plasmon enhanced energy transfer ratein NaYF4:Yb3+,Er3+ upconversion nanoparticles. Sci. Rep. 6, 18894 (2016).

    Article  CAS  Google Scholar 

  10. C. Cao, W. Qin, J. Zhang, Y. Wang, G. Wang, G. Wei, P. Zhu, L. Wang, and L. Jin: Up-conversion white light of Tm3+/Er3+/Yb3+ tri-doped CaF2 phosphors. Opt. Commun. 281, 1716–1719 (2008).

    Article  CAS  Google Scholar 

  11. Y. Hao, S. Lv, Z. Ma, and J. Qiu: Understanding differences in Er3+–Yb3+ codoped glass and glass ceramic based on upconversion luminescence for optical thermometry. RSC Adv. 8, 12165–12172 (2018).

    Article  CAS  Google Scholar 

  12. S. Fischer, R.D. Mehlenbacher, A. Lay, C. Siefe, A.P. Alivisatos, and J.A. Dionne: Small alkaline-earth-based core/shell nanoparticles for efficient upconversion. Nano Lett. 19, 3878–3885 (2019).

    Article  CAS  Google Scholar 

  13. V.N.K.B. Adusumalli, H.V.S.R.M. Koppisetti, S. Ganguli, S. Sarkar, and V. Mahalingam: Tuning the energy transfer efficiency between Ce3+ and Ln3+ Ions (Ln = Tm, Sm, Tb, Dy) by controlling the crystal phase of NaYF4 nanocrystals. Chem.–Eur. J. 23, 994–1000 (2017).

    Article  CAS  Google Scholar 

  14. M.L. Hitchman and K.F. Jensen: Chemical Vapor Deposition: Principles and Applications (Academic Press, London, 1993).

    Google Scholar 

  15. M.R. Catalano, G. Cucinotta, E. Schiliro, M. Mannini, A. Caneschi, R. Lo Nigro, E. Smecca, G.G. Condorelli, and G. Malandrino: Metal-organic chemical vapor deposition (MOCVD) synthesis of heteroepitaxial Pr0.7Ca0.3MnO3 films: Effects of processing conditions on structural/morphological and functional properties. ChemistryOpen 4, 523–532 (2015).

    Article  CAS  Google Scholar 

  16. G. Malandrino and I.L. Fragalà: Lanthanide “second-generation” precursors for MOCVD applications: Effects of the metal ionic radius and polyether length on coordination spheres and mass-transport properties. Coord. Chem. Rev. 250, 1605–1620 (2006).

    Article  CAS  Google Scholar 

  17. G. Malandrino, C. Benelli, F. Castelli, and I.L. Fragalà: Synthesis, characterization, crystal structure and mass transport properties of lanthanum β-diketonate glyme complexes, volatile precursors for metal−organic chemical vapor deposition applications. Chem. Mater. 10, 3434–3444 (1998).

    Article  CAS  Google Scholar 

  18. G. Malandrino, I.L. Fragalà, S. Aime, W. Dastrù, R. Gobetto, and C. Benelli: Synthesis, crystal structure and solid-state dynamics of the La(hfa)3⋅Me(OCH2CH2)4OMe (Hhfa = 1,1,1,5,5,5-hexafluoropentane-2,4-dione) precursor for MOCVD applications. J. Chem. Soc. Dalton Trans. 9, 1509–1512 (1998).

    Article  Google Scholar 

  19. M.R. Catalano, A.L. Pellegrino, P. Rossi, P. Paoli, P. Cortelletti, M. Pedroni, A. Speghini, and G. Malandrino: Upconverting Er3+, Yb3+ activated β-NaYF4 thin films: A solution route using a novel sodium β-diketonate polyether adduct. New J. Chem. 41, 4771–4776 (2017).

    Article  CAS  Google Scholar 

  20. S. Battiato, M.M. Giangregorio, M.R. Catalano, R. Lo Nigro, M. Losurdo, and G. Malandrino: Morphology-controlled synthesis of NiO films: The role of the precursor and the effect of the substrate nature on the films’ structural/optical properties. RSC Adv. 6, 30813–30823 (2016).

    Article  CAS  Google Scholar 

  21. G. Malandrino, L.M.S. Perdicaro, and I.L. Fragalà: Effects of processing parameters in the MOCVD growth of nanostructured lanthanum trifluoride and oxyfluoride thin films. Chem. Vap. Deposition 12, 736–741 (2006).

    Article  CAS  Google Scholar 

  22. M.E. Fragala, R.G. Toro, S. Privitera, and G. Malandrino: MOCVD fabrication of magnesium fluoride films: Effects of deposition parameters on structure and morphology. Chem. Vap. Deposition 17, 80–87 (2011).

    Article  CAS  Google Scholar 

  23. A.L. Pellegrino, S. La Manna, A. Bartasyte, P. Cortelletti, G. Lucchini, A. Speghini, and G. Malandrino: Upconverting tri-doped calcium fluoride-based thin films: A comparison of the MOCVD and sol–gel preparation methods. J. Mater. Chem. C 8, 3865–3877 (2020).

    Article  CAS  Google Scholar 

  24. A.L. Pellegrino, P. Cortelletti, M. Pedroni, A. Speghini, and G. Malandrino: Nanostructured CaF2:Ln3+ (Ln3+ = Yb3+/Er3+, Yb3+/Tm3+) thin films: MOCVD fabrication and their upconversion properties. Adv. Mater. Interfaces 4, 1700245 (2017).

    Article  CAS  Google Scholar 

  25. A.L. Pellegrino, M.R. Catalano, P. Cortelletti, G. Lucchini, A. Speghini, and G. Malandrino: Novel sol–gel fabrication of Yb3+/Tm3+ co-doped β-NaYF4 thin films and investigation of their upconversion properties. Photochem. Photobiol. Sci. 17, 1239–1246 (2018).

    Article  CAS  Google Scholar 

  26. S.C. Thompson, D.J. Cole-Hamilton, D.D. Gilliland, M.L. Hitchman, and J.C. Barnes: Stable and volatile β-diketonate complexes of copper, calcium, strontium, barium, and yttrium for use as chemical vapor deposition precursors. Adv. Mater. Opt. Electron. 1, 81–97 (1992).

    Article  CAS  Google Scholar 

  27. G. Malandrino, F. Castelli, and I.L. Fragalà: A novel route to the second-generation alkaline-earth metal precursors for metal-organic chemical vapor deposition: One-step synthesis of M(hfa)2⋅tetraglyme (M = Ba, Sr, Ca and Hhfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione). Inorg. Chim. Acta 224, 203–207 (1994).

    Article  CAS  Google Scholar 

  28. G. Malandrino, I.L. Fragalà, D.A. Neumayer, C.L. Stern, B.J. Hinds, and T.J. Marks: Synthesis, characterization and crystal structure of a new thermally stable and volatile precursor [bis(1,1,1,2,2,3,3,7,7,8,8,9,9,9-tetradecafluorononane-4,6-dionato)tetraglyme]barium(II) for MOCVD application. J. Mater. Chem. 4, 1061–1066 (1994).

    Article  CAS  Google Scholar 

  29. G.G. Condorelli, G. Malandrino, and I.L. Fragalà: Engineering of molecular architectures of β-diketonate precursors toward new advanced materials. Coord. Chem. Rev. 251, 1931–1950 (2007).

    Article  CAS  Google Scholar 

  30. R.D. Shannon: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 32, 751–767 (1976).

    Article  Google Scholar 

  31. F.A. Cotton, G. Wilkinson, C.A. Murillo, and M. Bochmann: Advanced Inorganic Chemistry, 6th ed. (Wiley/Interscience, NewYork, 1999).

    Google Scholar 

  32. J.A. Belot, D.A. Neumayer, C.J. Reedy, D.B. Studebaker, B.J. Hinds, C.L. Stern, and T.J. Marks: Volatility by design. synthesis and characterization of polyether adducts of Bis(1,1,1,5,5,5-hexafluoro-2,4- pentanedionato)barium and their implementation as metal-organic chemical vapor deposition precursors. Chem. Mater. 9, 1638–1648 (1997).

    Article  CAS  Google Scholar 

  33. S.R. Drake, A. Lyons, D.J. Otway, A.M.Z. Slawin, and D.J. Williams: Lanthanide β-diketonate glyme complexes exhibiting unusual co-ordination modes. J. Chem. Soc. Dalton Trans. 15, 2379–2386 (1993).

    Article  Google Scholar 

  34. G. Xu, Z.-M. Wang, Z. He, Z. Liu, C.-S. Liao, and C.-H. Yan: Synthesis and structural characterization of nonanuclear lanthanide complexes. Inorg. Chem. 41, 6802–6807 (2002).

    Article  CAS  Google Scholar 

  35. G. Malandrino, R. Licata, F. Castelli, I.L. Fragalà, and C. Benelli: New thermally stable and highly volatile precursors for lanthanum MOCVD–synthesis and characterization of lanthanum β-diketonate glyme complexes. Inorg. Chem. 34, 6233–6234 (1995).

    Article  CAS  Google Scholar 

  36. G. Malandrino, I.L. Fragalà, and P. Scardi: Heteroepitaxy of LaAlO3 (100) on SrTiO3 (100): In situ growth of LaAlO3 thin films by metal-organic chemical vapor deposition from a liquid single source. Chem. Mater. 10, 3765–3768 (1998).

    Article  CAS  Google Scholar 

  37. N.P. Kuzmina, D.M. Tsymbarenko, I.E. Korsakov, Z.A. Starikova, K.A. Lysenko, O.V. Boytsova, A.V. Mironov, I.P. Malkerova, and A.S. Alikhanyan: Mixed ligand complexes of AEE hexafluoroacetylacetonates with diglyme: Synthesis, crystal structure and thermal behavior. Polyhedron 27, 2811–2818 (2008).

    Article  CAS  Google Scholar 

  38. A.M. Makarevich, P.P. Semyannikov, and N.P. Kuzmina: Saturation vapor pressure of the mixed_ligand calcium Bis(hexafluoroacetylacetonate) complex with diglyme and water. Russian J. Inorg. Chem. 55, 1940–1944 (2010).

    Article  CAS  Google Scholar 

  39. A.M. Makarevich, A.S. Shchukin, A.V. Markelov, S.V. Samoilenkov, P.P. Semyannikov, and N.P. Kuzmina: Low-temperature MOCVD of epitaxial CaF2 and SrF2 films. ECS Trans. 25, 525–532 (2009).

    Article  CAS  Google Scholar 

  40. Y. Li, T. Liu, and Y. Du: Accelerated fabrication and upconversion luminescence of Yb3+/Er3+-codoped CaF2 nanocrystal by microwave heating. Appl. Phys. Express 5, 086501 (2012).

    Article  CAS  Google Scholar 

  41. D. Przybylska and T. Grzyb: Tailoring structure, morphology and up-conversion properties of CaF2:Yb3+,Er3+ nanoparticles by the route of synthesis. J. Mater. Sci. 55, 14166–14178 (2020).

    Article  CAS  Google Scholar 

  42. J. Zhao, Y.-J. Zhu, J. Wu, and F. Chen: Microwave-assisted solvothermal synthesis and upconversion luminescence of CaF2:Yb3+/Er3+ nanocrystals. J. Colloid Interface Sci. 440, 39–45 (2015).

    Article  CAS  Google Scholar 

  43. M. Pedroni, F. Piccinelli, T. Passuello, M. Giarola, G. Mariotto, S. Polizzi, M. Bettinelli, and A. Speghini: Lanthanide doped upconverting colloidal CaF2 nanoparticles prepared by a single-step hydrothermal method: Toward efficient materials with near infrared-to-near infrared upconversion emission. Nanoscale 3, 1456–1460 (2011).

    Article  CAS  Google Scholar 

  44. J.P. Laval, A. Mikou, B. Frit, and G. Roult: Short-range order in heavily lanthanide(3+) doped calcium fluoride fluorites: A powder neutron diffraction study. Solid State Ionics 28–30, 1300–1304 (1988).

    Article  Google Scholar 

  45. M. Czaja, S. Bodyl-Gajowska, R. Lisiecki, A. Meijerink, and Z. Mazurak: The luminescence properties of rare-earth ions in natural fluorite. Phys. Chem. Miner. 39, 639–648 (2012).

    Article  CAS  Google Scholar 

  46. M.L. Falin, K.I. Gerasimov, V.A. Latypov, A.M. Leushin, H. Bill, and D. Lovy: EPR and optical spectroscopy of Yb3+ ions in CaF2 and SrF2. J. Lumin. 102, 239–242 (2003).

    Article  CAS  Google Scholar 

  47. T. Kallel, M.A. Hassairi, M. Dammak, A. Lyberis, P. Gredin, and M. Mortier: Spectra and energy levels of Yb3+ ions in CaF2 transparent ceramics. J. Alloys Compd. 584, 261–268 (2014).

    Article  CAS  Google Scholar 

  48. S. Balabhadra, M.F. Reid, V. Golovko, and J.P.R. Wells: Absorption spectra, defect site distribution and upconversion excitation spectra of CaF2/SrF2/BaF2:Yb3+:Er3+ nanoparticles. J. Alloys Compd. 834, 155165 (2020).

    Article  CAS  Google Scholar 

  49. V. Petit, P. Camy, J.-L. Doualan, X. Portier, and R. Moncorge: Spectroscopy of Yb3+:CaF2: From isolated centers to clusters. Phys. Rev. B 78, 085131 (2008).

    Article  CAS  Google Scholar 

  50. S.M. Kaczmarek, T. Tsuboi, M. Ito, G. Boulon, and G. Leniec: Optical study of Yb3+/Yb2+ conversion in CaF2 crystals. J. Phys. Condens. Matter 17, 3771–3786 (2005).

    Article  CAS  Google Scholar 

  51. A.E. Nikiforov, A.Y. Zakharov, M.Y. Ugryumov, S.A. Kazanskii, A.I. Ryskin, and G.S. Shakurov: Crystal fields of hexameric rare-earth clusters in fluorites. Phys. Solid State 47, 1431–1435 (2005).

    Article  CAS  Google Scholar 

  52. B. Lacroix, C. Genevois, J.L. Doualan, G. Brasse, A. Braud, P. Ruterana, P. Camy, E. Talbot, R. Moncorge, and J. Margerie: Direct imaging of rare-earth ion clusters in Yb:CaF2. Phys. Rev. B 90, 125124 (2014).

    Article  CAS  Google Scholar 

  53. D. Serrano, A. Braud, J.L. Doualan, P. Camy, and R. Moncorge: Pr3+ cluster management in CaF2 by codoping with Lu3+ or Yb3+ for visible lasers and quantum down-converters. J. Opt. Soc. Am. B 29, 1854–1862 (2012).

    Article  CAS  Google Scholar 

  54. M. Pedroni, F. Piccinelli, T. Passuello, S. Polizzi, J. Ueda, P. Haro-Gonzalez, L.M. Maestro, D. Jaque, J. Garcia-Sole, M. Bettinelli, and A. Speghini: Water (H2O and D2O) dispersible NIR-to-NIR upconverting Yb3+/Tm3+ doped MF2 (M = Ca, Sr) colloids: Influence of the host crystal. Cryst. Growth. Des. 13, 4906–4913 (2013).

    Article  CAS  Google Scholar 

  55. S. Fujihara, Y. Kadota, and T. Kimura: Role of organic additives in the sol-gel synthesis of porous CaF2 anti-reflective coatings. J. Sol–Gel Sci. Technol. 24, 147–154 (2002).

    Article  CAS  Google Scholar 

  56. B. Chen and F. Wang: Combating concentration quenching in upconversion nanoparticles. Acc. Chem. Res. 53, 358–367 (2020).

    Article  CAS  Google Scholar 

  57. K.Z. Zheng, K.Y. Loh, Y. Wang, Q.S. Chen, J.Y. Fan, T. Jung, S.H. Nam, Y.D. Suh, and X.G. Liu: Recent advances in upconversion nanocrystals: Expanding the kaleidoscopic toolbox for emerging applications. Nano Today 29, 100797 (2019).

    Article  CAS  Google Scholar 

  58. D. Kang, E. Jeon, S. Kim, and J.S. Lee: Lanthanide-doped upconversion nanomaterials: Recent advances and applications. Biochip J. 14, 124–135 (2020).

    Article  CAS  Google Scholar 

  59. A. Baride, G. Sigdel, W.M. Cross, J.J. Kellar, and P.S. May: Near infrared-to-near infrared upconversion nanocrystals for latent fingerprint development. ACS Appl. Nano Mater. 2, 4518–4527 (2019).

    Article  CAS  Google Scholar 

  60. D. Kumar, S.K. Sharma, S. Verma, V. Sharma, and V. Kumar: A short review on rare earth doped NaYF4 upconverted nanomaterials for solar cell applications. Mater. Today Proc. 21, 1868–1874 (2020).

    Article  CAS  Google Scholar 

  61. J. Day, S. Senthilarasu, and T.K. Mallick: Improving spectral modification for application in solar cells: A review. Renew Energ. 132, 186–205 (2019).

    Article  Google Scholar 

  62. Q.Z. Zhang, F. Yang, Z.H. Xu, M. Chaker, and D.L. Ma: Are lanthanide-doped upconversion materials good candidates for photocatalysis? Nanoscale Horiz. 4, 579–591 (2019).

    Article  CAS  Google Scholar 

  63. S. Ullah, E.P. Ferreira-Neto, C. Hazra, R. Parveen, H.D. Rojas-Mantilla, M.L. Calegaro, Y.E. Serge-Correales, U.P. Rodrigues, and S.J.L. Ribeiro: Broad spectrum photocatalytic system based on BiVO4 and NaYbF4:Tm3+ upconversion particles for environmental remediation under UV-vis-NIR illumination. Appl. Catal. B-Environ. 243, 121–135 (2019).

    Article  CAS  Google Scholar 

  64. T.S. Atabaev and A. Molkenova: Upconversion optical nanomaterials applied for photocatalysis and photovoltaics: Recent advances and perspectives. Front. Mater. Sci. 13, 335–341 (2019).

    Article  Google Scholar 

  65. D.S. Reig, B. Grauel, V.A. Konyushkin, A.N. Nakladov, P.P. Fedorov, D. Busko, I.A. Howard, B.S. Richards, U. Resch-Genger, S.V. Kuznetsov, A. Turshatov, and C. Wurth: Upconversion properties of SrF2:Yb3+,Er3+ single crystals. J. Mater. Chem. C 8, 4093–4101 (2020).

    Article  Google Scholar 

  66. M. Kraft, C. Wurth, E. Palo, T. Soukka, and U. Resch-Genger: Colour-optimized Quantum Yields of Yb, Tm Co-doped Upconversion Nanocrystals. Methods Appl. Fluoresc. 7, 24001 (2019).

    Article  CAS  Google Scholar 

  67. P.S. May, A. Baride, M.Y. Hossan, and M. Berry: Measuring the internal quantum yield of upconversion luminescence for ytterbium-sensitized upconversion phosphors using the ytterbium(III) emission as an internal standard. Nanoscale 10, 17212–17226 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the University of Catania for financial support within the “Piano della Ricerca di Ateneo 2016–2018” and the University of Verona for funding in the framework of the project “Joint Projects 2018”. A. L. P. and G. M. thank the Bio-nanotech Research and Innovation Tower (BRIT) laboratory of the University of Catania (Grant No. PONa3_00136 financed by MIUR) for the Smartlab diffractometer facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graziella Malandrino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malandrino, G., Pellegrino, A.L., Lucchini, G. et al. Energy conversion systems: Molecular architecture engineering of metal precursors and their applications to vapor phase and solution routes. Journal of Materials Research 35, 2950–2966 (2020). https://doi.org/10.1557/jmr.2020.253

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.253

Navigation