Skip to main content
Log in

Tuning the electronic and magnetic properties of PEDOT-PSS-coated graphene oxide nanocomposites for biomedical applications

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We have synthesized graphene oxide (GO) using Hummer's method which was subsequently reduced (rGO) by hydrazine hydrate. The synthesized GO was coated with poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) conducting polymer (CP) to obtain CP-GO which was also further reduced using hydrazine hydrate to form CP-rGO. Scanning electron microscopy, Raman spectroscopy, X-ray diffraction, ultraviolet photoelectron spectroscopy, and X-ray photoelectron spectroscopy, X-ray absorption near-edge structure (XANES) techniques were used to study the electronic and structural properties of GO, rGO, CP-GO, and CP-rGO nanocomposites for biomedical applications. The superconducting quantum interference device method was used to investigate the magnetic properties of the nanocomposites. The electrical conductivity of the CP-GO nanocomposites was found to be ~104 times higher than that of GO due to an increase in sp2 content and subsequent decrease in oxygen functional groups. In rGO, we observed an improved paramagnetic saturation magnetization of approximately 5.6 × 0−3 emu/g at 2 K. The electronic and magnetic behavior of PEDOT-PSS-coated nanocomposites, as a result, were successfully tuned for potential biological and biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
TABLE 1:
Figure 3:
TABLE 2:
Figure 4:
Figure 5:
Figure 6:
Figure 7:

Similar content being viewed by others

References

  1. V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, and S. Seal: Graphene based materials: Past, present and future. Prog. Mater. Sci. 56, 1178 (2011).

    Article  CAS  Google Scholar 

  2. Y. Yang, A.M. Asiri, Z. Tang, D. Du, and Y. Lin: Graphene based materials for biomedical applications. Mater. Today 16, 365 (2013).

    Article  CAS  Google Scholar 

  3. N.O. Weiss, H. Zhou, L. Liao, Y. Liu, S. Jiang, Y. Huang, and X. Duan: Graphene: An emerging electronic material. Adv. Mater. 24, 5782 (2012).

    Article  CAS  Google Scholar 

  4. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff: Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 22, 3906 (2010).

    Article  CAS  Google Scholar 

  5. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902 (2008).

    Article  CAS  Google Scholar 

  6. H. Shen, L. Zhang, M. Liu, and Z. Zhang: Biomedical applications of graphene. Theranostics 2, 283 (2012).

    Article  CAS  Google Scholar 

  7. M. Naebe, J. Wang, A. Amini, H. Khayyam, N. Hameed, L.H. Li, Y. Chen, and B. Fox: Mechanical property and structure of covalent functionalised graphene/epoxy nanocomposites. Sci. Rep. 4, 4375 (2014).

    Article  CAS  Google Scholar 

  8. Y. Xuan, Y.Q. Wu, T. Shen, M. Qi, M.A. Capano, J.A. Cooper, and P.D. Ye: Atomic-layer-deposited nanostructures for graphene-based nanoelectronics. Appl. Phys. Lett. 92, 013101 (2008).

    Article  CAS  Google Scholar 

  9. C. Liu, S. Alwarappan, Z. Chen, X. Kong, and C.Z. Li: Membraneless enzymatic biofuel cells based on graphene nanosheets. Biosens. Bioelectron. 25, 1829 (2010).

    Article  CAS  Google Scholar 

  10. L. Wang, K. Lee, Y.Y. Sun, M. Lucking, Z. Chen, J.J. Zhao, and S.B. Zhang: Graphene oxide as an ideal substrate for hydrogen storage. ACS Nano 3, 2995 (2009).

    Article  CAS  Google Scholar 

  11. C-H. Lu, H-H. Yang, C-L. Zhu, X. Chen, and G-N. Chen: A graphene platform for sensing biomolecules. Angew. Chem. Int. Ed. 48, 4785 (2009).

    Article  CAS  Google Scholar 

  12. H. Fan, L. Wang, K. Zhao, N. Li, Z. Shi, Z. Ge, and Z. Jin: Fabrication, mechanical properties, and biocompatibility of graphene-reinforced Chitosan composites. Biomacromolecules 11, 2345 (2010).

    Article  CAS  Google Scholar 

  13. L. Feng and Z. Liu: Graphene in biomedicine: Opportunities and challenges. Nanomedicine 6, 317 (2011).

    Article  CAS  Google Scholar 

  14. X. Sun, Z. Liu, K. Welsher, J.T. Robinson, A. Goodwin, S. Zaric, and H. Dai: Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 1, 203 (2008).

    Article  CAS  Google Scholar 

  15. Y. Liu, X. Dong, and P. Chen: Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 41, 2283 (2012).

    Article  CAS  Google Scholar 

  16. K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li, and Z. Liu: Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv. Mater. 24, 1868 (2012).

    Article  CAS  Google Scholar 

  17. S. Mornet, S. Vasseur, F. Grasset, and E. Duguet: Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem. 14, 2161 (2004).

    Article  CAS  Google Scholar 

  18. Q.A. Pankhurst, J. Connolly, S.K. Jones, and J. Dobson: Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 36, 167 (2003).

    Article  Google Scholar 

  19. R. Kempaiah, A. Chung, and V. Maheshwari: Graphene as cellular interface: Electromechanical coupling with cells. ACS Nano 5, 6025 (2011).

    Article  CAS  Google Scholar 

  20. S.A. Gómez-Lopera, R.C. Plaza, and A.V. Delgado: Synthesis and characterization of spherical magnetite/biodegradable polymer composite particles. J. Colloid Interface Sci. 240, 40 (2001).

    Article  CAS  Google Scholar 

  21. S. Qin, X. Guo, Y. Cao, Z. Ni, and Q. Xu: Strong ferromagnetism of reduced graphene oxide. Carbon 78, 559 (2014).

    Article  CAS  Google Scholar 

  22. A. Saha, S. Basiruddin, S.C. Ray, S.S. Roy, and N.R. Jana: Functionalized graphene and graphene oxide solution via polyacrylate coating. Nanoscale 2, 2777 (2010).

    Article  CAS  Google Scholar 

  23. G. Kaur, R. Adhikari, P. Cass, M. Bown, and P. Gunatillake: Electrically conductive polymers and composites for biomedical applications. RSC Adv. 5, 37553 (2015).

    Article  CAS  Google Scholar 

  24. F. Jonas and G. Heywang: Technical applications for conductive polymers. Electrochim. Acta 39, 1345 (1994).

    Article  CAS  Google Scholar 

  25. A. Peramo, M.G. Urbanchek, S.A. Spanninga, L.K. Povlich, P. Cederna, and D.C. Martin: In situ polymerization of a conductive polymer in acellular muscle tissue constructs. Tissue Eng. A 14, 423 (2008).

    Article  CAS  Google Scholar 

  26. D. Yoo, J. Kim, and J.H. Kim: Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/graphene composites and their applications in energy harvesting systems. Nano Res. 7, 717 (2014).

    Article  CAS  Google Scholar 

  27. Y.F. Liu, J. Feng, Y.F. Zhang, H.F. Cui, D. Yin, Y.G. Bi, J.F. Song, Q.D. Chen, and H.B. Sun: Improved efficiency of indium-tin-oxide-free organic light-emitting devices using PEDOT:PSS/graphene oxide composite anode. Org. Electron 26, 81 (2015).

    Article  CAS  Google Scholar 

  28. X. Wu, J. Liu, D. Wu, Y. Zhao, X. Shi, J. Wang, S. Huang, and G. He: Highly conductive and uniform graphene oxide modified PEDOT:PSS electrodes for ITO-free organic light emitting diodes. J. Mater. Chem. C 2, 4044 (2014).

    Article  CAS  Google Scholar 

  29. B. Yin, Q. Liu, L. Yang, X. Wu, Z. Liu, Y. Hua, S. Yin, and Y. Chen: Buffer layer of PEDOT:PSS/graphene composite for polymer solar cells. J. Nanosci. Nanotechnol. 10, 1934 (2010).

    Article  CAS  Google Scholar 

  30. R. Starbird, C.A. García-González, I. Smirnova, W.H. Krautschneider, and W. Bauhofer: Synthesis of an organic conductive porous material using starch aerogels as template for chronic invasive electrodes. Mater. Sci. Eng. C 37, 177 (2014).

    Article  CAS  Google Scholar 

  31. S.C. Ray, S.K. Bhunia, A. Saha, and N.R. Jana: Graphene oxide (GO)/reduced-GO and their composite with conducting polymer nanostructure thin films for non-volatile memory device. Microelectron. Eng. 146, 48 (2015).

    Article  CAS  Google Scholar 

  32. M.S. Eluyemi, M.A. Eleruja, A.V. Adedeji, B. Olofinjana, O. Fasakin, O.O. Akinwunmi, O.O. Ilori, A.T. Famojuro, S.A. Ayinde, and E.O.B. Ajayi: Synthesis and characterization of graphene oxide and reduced graphene oxide thin films deposited by spray pyrolysis method. Graphene 5, 143 (2016).

    Article  CAS  Google Scholar 

  33. S. Roy, N. Soin, R. Bajpai, D.S. Misra, J.A. McLaughlin, and S.S. Roy: Graphene oxide for electrochemical sensing applications. J. Mater. Chem. 21, 14725 (2011).

    Article  CAS  Google Scholar 

  34. A. Ganguly, S. Sharma, P. Papakonstantinou, and J. Hamilton: Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J. Phys. Chem. C 115, 17009 (2011).

    Article  CAS  Google Scholar 

  35. E.S. Ganya, N. Soin, S.J. Moloi, J.A. McLaughlin, W.F. Pong, and S.C. Ray: Polyacrylate grafted graphene oxide nanocomposites for biomedical applications. J. Appl. Phys. 127, 54302 (2020).

    Article  CAS  Google Scholar 

  36. M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cançado, A. Jorio, and R. Saito: Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 9, 1276 (2007).

    Article  CAS  Google Scholar 

  37. A.C. Ferrari: Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47 (2007).

    Article  CAS  Google Scholar 

  38. A. Kaniyoor and S. Ramaprabhu: A Raman spectroscopic investigation of graphite oxide derived graphene. AIP Adv. 2, 32183 (2012).

    Article  CAS  Google Scholar 

  39. G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K.M. Abramski: Graphene oxide vs reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser. Opt. Express 20, 19463 (2012).

    Article  CAS  Google Scholar 

  40. A. Ferrari and J. Robertson: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B: Condens. Matter Mater. Phys. 61, 14095 (2000).

    Article  CAS  Google Scholar 

  41. S. Awasthi, P.S. Gopinathan, A. Rajanikanth, and C. Bansal: Current–voltage characteristics of electrochemically synthesized multi-layer graphene with polyaniline. J. Sci. Adv. Mater. Devices 3, 37 (2018).

    Article  Google Scholar 

  42. S.C. Ray, A. Saha, S.K. Basiruddin, S.S. Roy, and N.R. Jana: Polyacrylate-coated graphene-oxide and graphene solution via chemical route for various biological application. Diam. Relat. Mater. 20, 449 (2011).

    Article  CAS  Google Scholar 

  43. S.C. Ray, J.W. Chiou, W.F. Pong, and M.H. Tsai: The electronic properties of nanomaterials elucidated by synchrotron radiation-based spectroscopy. Crit. Rev. Solid State Mater. Sci. 31, 91 (2006).

    Article  CAS  Google Scholar 

  44. N. Soin, S.C. Ray, S. Sarma, D. Mazumder, S. Sharma, Y.F. Wang, W.F. Pong, S.S. Roy, and A.M. Strydom: Tuning the electronic and magnetic properties of nitrogen-functionalized few-layered graphene nanoflakes. J. Phys. Chem. C 121, 14073 (2017).

    Article  CAS  Google Scholar 

  45. A. Hunt, D.A. Dikin, E.Z. Kurmaev, T.D. Boyko, P. Bazylewski, G.S. Chang, and A. Moewes: Epoxide speciation and functional group distribution in graphene oxide paper-like materials. Adv. Funct. Mater. 22, 3950 (2012).

    Article  CAS  Google Scholar 

  46. D. Geng, S. Yang, Y. Zhang, J. Yang, J. Liu, R. Li, T.K. Sham, X. Sun, S. Ye, and S. Knights: Nitrogen doping effects on the structure of graphene. Appl. Surf. Sci. 257, 9193 (2011).

    Article  CAS  Google Scholar 

  47. D. Pacilé, M. Papagno, A.F. Rodríguez, M. Grioni, L. Papagno, C. Girit, J.C. Meyer, G.E. Begtrup, and A. Zettl: Near-edge X-ray absorption fine-structure investigation of graphene. Phys. Rev. Lett. 101, 66806 (2008).

    Article  CAS  Google Scholar 

  48. R.P. Gandhiraman, D. Nordlund, C. Javier, J.E. Koehne, B. Chen, and M. Meyyappan: X-ray absorption study of graphene oxide and transition metal oxide nanocomposites. J. Phys. Chem. C 118, 18706 (2014).

    Article  CAS  Google Scholar 

  49. S.G. Urquhart and H. Ade: Trends in the carbonyl core (C 1s, O 1s) → Π*c = o transition in the near-edge X-ray absorption fine structure spectra of organic molecules. J. Phys. Chem. B 106, 8531 (2002).

    Article  CAS  Google Scholar 

  50. P-G. Ren, D-X. Yan, X. Ji, T. Chen, and Z-M. Li: Temperature dependence of graphene oxide reduced by hydrazine hydrate. Nanotechnology 22, 55705 (2011).

    Article  CAS  Google Scholar 

  51. J. Casanovas, J.M. Ricart, J. Rubio, F. Illas, and J.M. Jiménez-Mateos: Origin of the large N 1s binding energy in X-ray photoelectron spectra of calcined carbonaceous materials. J. Am. Chem. Soc. 118, 8071 (1996).

    Article  CAS  Google Scholar 

  52. C.H. Chuang, S.C. Ray, D. Mazumder, S. Sharma, A. Ganguly, P. Papakonstantinou, J.W. Chiou, H.M. Tsai, H.W. Shiu, C.H. Chen, H.J. Lin, J. Guo, and W.F. Pong: Chemical modification of graphene oxide by nitrogenation: An X-ray absorption and emission spectroscopy study. Sci. Rep. 7, 1 (2017).

    Article  CAS  Google Scholar 

  53. C. Kozlowski and P.M.A. Sherwood: X-ray photoelectron spectroscopic studies of carbon-fibre surfaces. Part 4 - The effect of electrochemical treatment in nitric acid. J. Chem. Soc. Faraday Trans. 1: Phys. Chem. Condens. Phases 80, 2099 (1984).

    Article  CAS  Google Scholar 

  54. R. Al-Gaashani, A. Najjar, Y. Zakaria, S. Mansour, and M.A. Atieh: XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceram. Int. 45, 14439 (2019).

    Article  CAS  Google Scholar 

  55. G. Consiglio, P. Di Pietro, L. D'Urso, G. Forte, G. Grasso, C. Sgarlata, D. Cossement, R. Snyders, and C. Satriano: Surface tailoring of polyacrylate-grafted graphene oxide for controlled interactions at the biointerface. J. Colloid Interface Sci. 506, 532 (2017).

    Article  CAS  Google Scholar 

  56. D.O. Idisi, J.A. Oke, S. Sarma, S.J. Moloi, S.C. Ray, W.F. Pong, and A.M. Strydom: Tuning of electronic and magnetic properties of multifunctional R-GO-ATA-Fe2O3-composites for magnetic resonance imaging (MRI) contrast agent. J. Appl. Phys. 126, 35301 (2019).

    Article  CAS  Google Scholar 

  57. M. Veerapandian, L. Zhang, K. Krishnamoorthy, and K. Yun: Surface activation of graphene oxide nanosheets by ultraviolet irradiation for highly efficient anti-bacterials. Nanotechnology 24, 395706 (2013).

    Article  CAS  Google Scholar 

  58. R. Garg, N. Dutta, and N. Choudhury: Work function engineering of graphene. Nanomaterials 4, 267 (2014).

    Article  CAS  Google Scholar 

  59. S. Sarma, S.C. Ray, and A.M. Strydom: Electronic and magnetic properties of nitrogen functionalized graphene-oxide. Diam. Relat. Mater. 79, 1 (2017).

    Article  CAS  Google Scholar 

  60. F.L.E. Jakobsson, X. Crispin, L. Lindell, A. Kanciurzewska, M. Fahlman, W.R. Salaneck, and M. Berggren: Towards all-plastic flexible light emitting diodes. Chem. Phys. Lett. 433, 110 (2006).

    Article  CAS  Google Scholar 

  61. O.V. Yazyev and L. Helm: Defect-induced magnetism in graphene. Phys. Rev. B: Condens. Matter Mater. Phys. 75, 125408 (2007).

    Article  CAS  Google Scholar 

  62. M.A.H. Vozmediano, M.P. López-Sancho, T. Stauber, and F. Guinea: Local defects and ferromagnetism in graphene layers. Phys. Rev. B: Condens. Matter Mater. Phys. 72, 155121 (2005).

    Article  CAS  Google Scholar 

  63. M. Wang, W. Huang, M.B. Chan-Park, and C.M. Li: Magnetism in oxidized graphenes with hydroxyl groups. Nanotechnology 22, 105702 (2011).

    Article  CAS  Google Scholar 

  64. K. Singh, A. Ohlan, P. Saini, and S.K. Dhawan: Poly(3,4-ethylenedioxythiophene)γ-Fe2O3 polymer composite–super paramagnetic behavior and variable range hopping 1D conduction mechanism–synthesis and characterization. Polym. Adv. Technol. 19, 229 (2008).

    Article  CAS  Google Scholar 

  65. K. Elk, J. Richter, and V. Christoph: Density of states and electrical conductivity of disordered alloys with strong electron correlation. J. Phys. F Met. Phys. 9, 307 (1979).

    Article  CAS  Google Scholar 

  66. W. Yang, K.R. Ratinac, S.P. Ringer, P. Thordarson, J.J. Gooding, and F. Braet: Carbon nanomaterials in biosensors: Should you use nanotubes or graphene? Angew. Chem. Int. Ed. 49, 2114 (2010).

    Article  CAS  Google Scholar 

  67. Y. Shao, S. Zhang, M.H. Engelhard, G. Li, G. Shao, Y. Wang, J. Liu, I.A. Aksay, and Y. Lin: Nitrogen-doped graphene and its electrochemical applications. J. Mater. Chem. 20, 7491 (2010).

    Article  CAS  Google Scholar 

  68. K.T. Nguyen and Y. Zhao: Integrated graphene/nanoparticle hybrids for biological and electronic applications. Nanoscale 6, 6245 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sekhar C. Ray.

Supplementary materials

Supplementary materials

To view supplementary material for this article, please visit https://doi.org/10.1557/jmr.2020.236.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganya, E.S., Moloi, S.J., Ray, S.C. et al. Tuning the electronic and magnetic properties of PEDOT-PSS-coated graphene oxide nanocomposites for biomedical applications. Journal of Materials Research 35, 2478–2490 (2020). https://doi.org/10.1557/jmr.2020.236

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.236

Navigation