Skip to main content
Log in

Physical aspects of CMAS particle dynamics and deposition in turboshaft engines

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Gas turbine engines for fixed-wing or rotary-wing aircraft are operated in a variety of harsh weather environments ranging from arctic, volcanic zones, to desert conditions. Operation under these degraded conditions leads to the undesired entrainment of complex particulates resulting in drastic performance losses. Hence, there is a critical need to understand the governing mechanisms to inform the development of durable thermal and environmental barrier coatings. The objective of the current work is to present a novel multiscale physics-based approach to study two-phase flows that take into account the underpinning particle transport and deposition dynamics. Sessile droplet models are presented and used to compute the contact angle at high temperatures and compared with experiments. The study also investigates the sensitivity of deposition patterns to the Stokes number and the results identify local vulnerability regions. The analysis suggests that particle size distributions and the initial trajectories of the particles are critically important in predicting the final deposition pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Table 1
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Similar content being viewed by others

References

  1. A. Filippone and N. Bojdo: Turboshaft engine air particle separation. Prog. Aerosp. Sci. 46, 224–245 (2010).

    Article  Google Scholar 

  2. A. Van Dokelarr, R.V. Martin, M. Brauer, R. Kahn, R. Levy, C. Verduzco, and P.J. Villeneuve: Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: Development and application. Environ. Health Perspect. 118, 847–855 (2010).

    Article  Google Scholar 

  3. M. Walock, B. Barnett, A. Ghoshal, M. Murugan, J.J. Swab, M.S. Pepi, D. Hopkins, G. Gazonas, C. Rowe, and K. Kerner: Micro-scale sand particles within the hot section of a gas turbine engine. In Mechanical Properties and Performance of Engineering Ceramics and Composites XI: Ceramic Engineering and Science Proceedings, Salem J, Singh D, Fukushima M and Gyekenyesi A, eds, Vol, 37. (John Wiley & Sons, Hoboken, New Jersey, 2017), pp. 159–170.

  4. A. Nieto, M. Walock, A. Ghoshal, D. Zhu, W. Gamble, B. Barnett, M. Murugan, C. Pepi, C. Rowe, and R. Pegg: Layered, composite, and doped thermal barrier coatings exposed to sand laden flows within a gas turbine engine: Microstructural evolution, mechanical properties, and CMAS deposition. Surf. Coat. Technol. 349, 1107–1116 (2018).

    Article  CAS  Google Scholar 

  5. A. Ghoshal, M. Murugan, M.J. Walock, A. Nieto, B.D. Barnett, M.S. Pepi, J.J. Swab, D. Zhu, K.A. Kerner, C.R. Rowe, C.Y. Shiao, D.A. Hopkins, and G.A. Gazonas: Molten particulate impact on tailored thermal barrier coatings for gas turbine engine. J. Eng. Gas Turbines Power 140, 022601 (2018).

    Article  Google Scholar 

  6. M. Murugan, A. Ghoshal, M.J. Walock, B.D. Barnett, M.S. Pepi, and K.A. Kerner: Sand particle-Induced deterioration of thermal barrier coatings on gas turbine blades. Adv. Aircr. Spacecr. Sci. 4, 37 (2017).

    Article  Google Scholar 

  7. D.K. Larry Fehrenbacher, J. Kutsch, I. Vesnovsky, E. Fehrenbacher, A. Ghoshal, M. Walock, M. Murugan, and A. Nieto: Advanced environmental barrier coatings for SiC CMCs. In Advances in Ceramics for Environmental, Functional, Structural, and Energy Applications II, Vol. 266, M.M. Mahmoud, K. Sridharan, H. Colorado, A.S. Bhalla, J.P. Singh, S. Gupta, J. Langhorn, A. Jitianu and N. Jose Manjooran, eds. (John Wiley & Sons, Hoboken, NJ, USA, 2019), pp. 83–93.

    Google Scholar 

  8. S. Balachandar and J.K. Eaton: Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111–133 (2010).

    Article  Google Scholar 

  9. A. Guha: Transport and deposition of particles in turbulent and laminar flow. Annu. Rev. Fluid Mech. 40, 311–341 (2008).

    Article  Google Scholar 

  10. S. Elghobashi: An updated classification map of particle-laden turbulent flows. In IUTAM Symposium on Computational Approaches to Multiphase Flow, Proceedings of an IUTAM Symposium held at Argonne National Laboratory, 4–7 October 2007.

  11. E. Loth: Numerical approaches for motion of dispersed particles, droplets, and bubbles. Prog. Energy Combust. Sci. 26, 161–223 (2000).

    Article  Google Scholar 

  12. R.O. Fox: Large-eddy-simulation tools for multiphase flows. Annu. Rev. Fluid Mech. 44, 47–76 (2012).

    Article  Google Scholar 

  13. A. Passalacqua, F. Laurent, E. Madadi-Kandjani, J.C. Heylmun, and R. Fox: An open-source quadrature-based population balance solver for OpenFOAM. Chem. Eng. Sci. 176, 306–318 (2018).

    Article  CAS  Google Scholar 

  14. M. Uhlmann: Interface-resolved direct numerical simulation of vertical particulate channel flow in the turbulent regime. Phys. Fluids 20, 053305 (2008).

    Article  Google Scholar 

  15. R. Fox, F. Laurent, and F. Massot: Numerical simulation of spray coalescence in an Eulerian framework: Direct quadrature method of moments and multi-fluid method. J Comput. Phys. 277, 3058–3088 (2008).

    Article  Google Scholar 

  16. S. Elghobashi: Direct numerical simulation of turbulent flows laden with droplets or bubbles. Annu. Rev. Fluid Mech. 51, 217–244 (2019).

    Article  Google Scholar 

  17. Y. Kozak, S.S. Dammati, L.G. Bravo, P.E. Hamlington, and A.Y. Poludnenko: WENO interpolation for Lagrangian particles in highly compressible flow regimes. J. Comput. Phys. 402, 109054 (2020).

    Article  Google Scholar 

  18. T.Y. Ma, F. Zhang, H.F. Liu, and M.F. Yao: Modeling of droplet/wall interaction based on SPH method. Int. J. Heat Mass Transfer 105, 296–304 (2017).

    Article  Google Scholar 

  19. X. Yang, L. Dai, and S.-C. Kong: Simulation of liquid drop impact on dry and wet surfaces using SPH method. Proc. Combust. Inst. 36, 2393–99 (2017).

    Article  CAS  Google Scholar 

  20. J.H. Snoeijer and B. Andreotti: Moving contact lines: Scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech. 35, 269–292 (2013).

    Article  Google Scholar 

  21. L. Bravo, Q. Xue, M. Murugan, A. Ghoshal, M. Walock, and A. Flatau: Particle transport analysis of sand ingestion in gas turbine jet engines. In 53rd AIAA/SAE/ASEE Joint Propulsion Conference of the American Institute of Aeronautics and Astronautics, Atlanta, GA, 2017.

  22. D.I. Graham and P.W. James: Turbulent dispersion of particles using eddy interaction models. Int. J. Multiphase Flow 22, 157–175 (1999).

    Article  Google Scholar 

  23. A. Mofakham and G. Ahmadi: Particle dispersion and deposition in inhomogeneous turbulent flows using continuous random walk models. Phys. Fluids 31, 083301 (2019).

    Article  Google Scholar 

  24. J.P. Bons, R. Prenter, and S. Whitaker: A simple physics based model for particle rebound and deposition in turbomachinery. J. Turbomach. 139, 081009 (2017).

    Article  Google Scholar 

  25. S. Singh and D. Tafti: Particle deposition model for particulate flows at high temperatures in gas turbine engine components. Int. J. Heat Fluid Flow 52, 72–83 (2015).

    Article  Google Scholar 

  26. N. Bojdo and A. Filippone: A simple model to assess the role of dust composition and size on deposition in rotorcraft engines. Aerospace 6, 44 (2019).

    Article  Google Scholar 

  27. C. Huh and L.E. Scriven: Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35, 85–101 (1971).

    Article  CAS  Google Scholar 

  28. Z. Du, J. Wang, S. Wen, P. Wang, D. Zhang, and C. Yin: Study on the properties of UHMW-PE film. Adv. Mater. Phys. Chem. 5, 337–343 (2015).

    Article  CAS  Google Scholar 

  29. Y.X. Kang, Y. Bai, G.Q. Du, F.L. Yu, C.G. Bao, Y.T. Wang, and F. Ding: High temperature wettability between CMAS/YSZ coating with tailored surface microstructures. Mater. Lett. 229, 40–43 (2018).

    Article  CAS  Google Scholar 

  30. T. Arts and M.L. De Rouvroit: Aero-thermal performance of a two-dimensional highly loaded transonic turbine nozzle guide vane: A test case for inviscid and viscous flow computations. J. Turbomach 114, 147–154 (1992).

    Article  Google Scholar 

  31. M. Ray, X. Yang, S.-C. Kong, L. Bravo, and C-B.M. Kweon: High-fidelity simulation of drop collision and vapor–liquid equilibrium of van der Waals fluids. Proc. Combust. Inst. 36, 2385–2392 (2017).

    Article  CAS  Google Scholar 

  32. X. Yang and S.-C. Kong: Smoothed particle hydrodynamics method for evaporating multiphase flows. Phys. Rev. E 96, 033309 (2017).

    Article  Google Scholar 

  33. G.A. Brès, S.T. Bose, M. Emory, F.E. Ham, O.T. Schmidt, G. Rigas, and T. Colonius: Large-Eddy simulations of co-annular turbulent jet using a Voronoi-based mesh generation framework. In AIAA/CEAS Aeroacoustics Conference (American Institute of Aeronautics and Astronautics, Atlanta, GA, USA, 2018).

  34. F. Ham, S. Bose, B. Hejazi, and V. Mittal: A low-dissipation numerical scheme on Voronoi grids for complex geometries. In 68th Annual Meeting of the APS Division of Fluid Dynamics, Vol. 60 (American Physical Society, Boston, MA, USA, 2015).

  35. B.H. Joo, G. Medic, D.A. Philips, and S.T. Bose: Large-eddy simulation of a compressor rotor. In Proceedings of the Stanford Summer Program, Center for Turbulence Research, Stanford, CA, 2014; p. 467.

  36. N. Jain, L. Bravo, D. Kim, M. Murugan, A. Ghoshal, F. Ham, and A. Flatau: Massively parallel large eddy simulation of rotating turbomachinery for variable speed gas turbine engine operation. Energies 13, 703 (2020).

    Article  Google Scholar 

  37. W. Vreman A: An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications. Phys. Fluids 16, 367081 (2004).

    Google Scholar 

  38. C. Crowe, M. Sommerfeld, and Y. Tsuju: Multiphase Flows with Droplets and Particles (CRC Press, Boca Ranton, FL, 1998).

    Google Scholar 

  39. L. Bravo, D. Kim, F. Ham, and K. Kerner: High fidelity simulation of primary breakup and vaporization of liquid jet in cross flow. In AIAA-2018-4683, 2018 Joint Propulsion Conference, Cincinatti, OH, 2018.

  40. Q. Du, V. Faber, and M. Gunzburger: Centroidal Voronoi tessellations: Applications and algorithms. SIAM Rev. 41, 637–676 (1999).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by resources from the DoD High-Performance Computing Modernization Program (HPCMP) FRONTIER Award to ARL with project title “Petascale High Fidelity Simulation of Atomization and Spray/Wall Interactions”. L.B., A.G., and M.M. were supported by the VTD 6.1 basic research mission program in propulsion sciences and a DoD Laboratory University Collaborative Initiative (LUCI) Fellowship. The simulations were run on the Centennial HPC System at the ARL DSRC. This work was conceptualized through ARL participation in the 2018 Center for Turbulence Research Summer Program at Stanford University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis G. Bravo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bravo, L.G., Jain, N., Khare, P. et al. Physical aspects of CMAS particle dynamics and deposition in turboshaft engines. Journal of Materials Research 35, 2249–2259 (2020). https://doi.org/10.1557/jmr.2020.234

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.234

Keywords

Navigation