Abstract
This work is focused on the evaluation of oxygen semi-permeation and electrochemical performances under high oxygen gradient of free cobalt perovskite membrane materials; La1−xSrxFeO3−δ perovskite. For a better understanding of oxygen transport through La1−xSrxFeO3−δ perovskite membranes, the oxygen diffusion, oxygen incorporation, and desorption coefficients were determined under high oxygen gradient in relation to the temperature for La1−xSrxFeO3−δ (with x = 0.1, 0.3, 0.5, and 0.7) by a specific method based on oxygen semi-permeation. The best electrochemical performances were obtained for La0.3Sr0.7FeO3−δ (LSF37) and La0.5Sr0.5FeO3−δ (LSF55) perovskite membranes with oxygen fluxes of 1.7 × 10−3 and 1.2 × 10−3 mol/m2 s at 900 °C, respectively. The oxygen incorporation and desorption coefficients of LSF55 were two times lower than those of LSF37 and similar to those of La0.5Sr0.5Fe0.7Ga0.3O3−δ. The values of these coefficients are discussed and compared with the data reported in the literature by isotopic exchange for the similar material compositions.
Similar content being viewed by others
References
H.J.M. Bouwmeester and A. Burggraaf: Dense ceramic membranes for oxygen separation. CRC Handb. Solid State Electrochem., 481 (1997).
T. Takahashi, T. Esaka, and H. Iwahara: Electrical conduction in the sintered oxides of the system Bi2O3-BaO. J. Solid State Chem. 16, 317 (1976).
J. Sunarso, S. Baumann, J.M. Serra, W.A. Meulenberg, S. Liu, Y.S. Lin, and J.C. Diniz da Costa: Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J. Membr. Sci. 320, 13 (2008).
P-M. Geffroy, E. Blond, N. Richet, and T. Chartier: Understanding and identifying the oxygen transport mechanisms through a mixed-conductor membrane. Chem. Eng. Sci. 162, 245 (2017).
M. Arnold, H. Wang, and A. Feldhoff: Influence of CO2 on the oxygen permeation performance and the microstructure of perovskite-type (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ membranes. J. Membr. Sci. 293, 44 (2007).
C. Buysse, A. Kovalevsky, F. Snijkers, A. Buekenhoudt, S. Mullens, J. Luyten, J. Kretzschmar, and S. Lenaerts: Development, performance and stability of sulfur-free, macrovoid-free BSCF capillaries for high temperature oxygen separation from air. J. Membr. Sci. 372, 239 (2011).
T. Klande, O. Ravkina, and A. Feldhoff: Effect of microstructure on oxygen permeation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ and SrCo0.8Fe0.2O3−δ membranes. J. Eur. Ceram. Soc. 33, 1129 (2013).
A. Berenov, A. Atkinson, J. Kilner, M. Ananyev, V. Eremin, N. Porotnikova, A. Farlenkov, E. Kurumchin, H.J.M. Bouwmeester, E. Bucher, and W. Sitte: Oxygen tracer diffusion and surface exchange kinetics in Ba0.5Sr0.5Co0.8Fe0.2O3−δ. Solid State Ion. 268, 102 (2014).
Y. Teraoka, H-M. Zhang, S. Furukawa, and N. Yamazoe: Oxygen permeation through perovskite-type oxides. Chem. Lett. 11, 1743 (1985).
M. Katsuki, S. Wang, M. Dokiya, and T. Hashimoto: High temperature properties of La0.6Sr0.4Co0.8Fe0.2O3−δ oxygen nonstoichiometry and chemical diffusion constant. Solid State Ion. 156, 453 (2003).
T. Li, T. Kamhangdatepon, B. Wang, U.W. Hartley, and K. Li: New bio-inspired design for high-performance and highly robust La0.6Sr0.4Co0.2Fe0.8O3-δ membranes for oxygen permeation. J. Membr. Sci. 578, 203 (2019).
J. Gao, Y. Lun, N. Han, X. Tan, C. Fan, and S. Liu: Influence of nitric oxide on the oxygen permeation behavior of La0.6Sr0.4Co0.2Fe0.8O3−δ perovskite membranes. Sep. Purif. Technol. 210, 900 (2019).
S.P. Jiang: Development of lanthanum strontium cobalt ferrite perovskite electrodes of solid oxide fuel cells–A review. Int. J. Hydrog. Energy 44, 7448 (2019).
A. Chanda, B.X. Huang, J. Malzbender, and R.W. Steinbrech: Micro- and macro-indentation behaviour of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite. J. Eur. Ceram. Soc. 31, 401 (2011).
M. Lipińska-Chwałek, F. Schulze-Küppers, and J. Malzbender: Strength and elastic modulus of lanthanum strontium cobalt ferrite membrane materials. Ceram. Int. 41, 1355 (2015).
E. Bucher and W. Sitte: Defect chemical analysis of the electronic conductivity of strontium-substituted lanthanum ferrite. Solid State Ion. 173, 23 (2004).
M.V. Patrakeev, J.A. Bahteeva, E.B. Mitberg, I.A. Leonidov, V.L. Kozhevnikov, and K.R. Poeppelmeier: Electron/hole and ion transport in La1−xSrxFeO3−δ. J. Solid State Chem. 172, 219 (2003).
E.V. Tsipis, M.V. Patrakeev, V.V. Kharton, A.A. Yaremchenko, G.C. Mather, A.L. Shaula, I.A. Leonidov, V.L. Kozhevnikov, and J.R. Frade: Transport properties and thermal expansion of Ti-substituted La1−xSrxFeO3−δ (x=0.5–0.7). Solid State Sci. 7, 355 (2005).
M. Søgaard, P. Vang Hendriksen, and M. Mogensen: Oxygen nonstoichiometry and transport properties of strontium substituted lanthanum ferrite. J. Solid State Chem. 180, 1489 (2007).
V.V. Kharton, J.C. Waerenborgh, A.P. Viskup, S.O. Yakovlev, M.V. Patrakeev, P. Gaczyński, I.P. Marozau, A.A. Yaremchenko, A.L. Shaula, and V.V. Samakhval: Mixed conductivity and Mössbauer spectra of (La0.5Sr0.5)1−xFe1−yAlyO3−δ (x=0–0.05, y=0–0.30). J. Solid State Chem. 179, 1273 (2006).
M.F. Lü, E.V. Tsipis, J.C. Waerenborgh, A.A. Yaremchenko, V.A. Kolotygin, S. Bredikhin, and V.V. Kharton: Thermomechanical, transport and anodic properties of perovskite-type (La0.75Sr0.25)0.95Cr1−xFexO3−δ. J. Power Sources 206, 59 (2012).
P.M. Geffroy, M. Reichmann, L. Kilmann, J. Jouin, N. Richet, and T. Chartier: Identification of the rate-determining step in oxygen transport through La1−xSrxFe1−yGayO3−δ perovskite membranes. J. Membr. Sci. 476, 340 (2015).
V.V. Kharton, A.L. Shaulo, A.P. Viskup, M. Avdeev, A.A. Yaremchenko, M.V. Patrakeev, A.I. Kurbakov, E.N. Naumovich, and F.M.B. Marques: Perovskite-like system (Sr,La)(Fe,Ga)O3−δ: Structure and ionic transport under oxidizing conditions. Solid State Ion. 150, 229 (2002).
J. Gurauskis, Ø.F. Lohne, D.S. Lagergren, E.T. Wefring, and K. Wiik: Oxygen permeation in symmetric and asymmetric La0.2Sr0.8Fe0.8Ta0.2O3−δ membranes. J. Eur. Ceram. Soc. 36, 1427 (2016).
J.H. Park, K.Y. Kim, and S.D. Park: Oxygen permeation and stability of La0.6Sr0.4TixFe1−xO3−δ (x = 0.2 and 0.3) membrane. Desalination 245, 559 (2009).
B. Kayaalp, S. Lee, K. Klauke, J. Seo, L. Nodari, A. Kornowski, W. Jung, and S. Mascotto: Template-free mesoporous La0.3Sr0.7Ti1-xFexO3±δ for CH4 and CO oxidation catalysis. Appl. Catal. B Environ. 245, 536 (2019).
J.E. Ten Elshof, H.J.M. Bouwmeester, and H. Verweij: Oxygen transport through La1−xSrxFeO3−δ membranes. I. Permeation in air/He gradients. Solid State Ion. 81, 97 (1995).
J.E. Ten Elshof, H.J.M. Bouwmeester, and H. Verweij: Oxygen transport through La1−xSrxFeO3−δ membranes II. Permeation in air/CO, CO2 gradients. Solid State Ion. 89, 81 (1996).
S. Diethelm, J. Van herle, J. Sfeir, and P. Buffat: Correlation between oxygen transport properties and microstructure in La0.5Sr0.5FeO3−δ. J. Eur. Ceram. Soc. 25, 2191 (2005).
T. Ishigaki, S. Yamauchi, K. Kishio, J. Mizusaki, and K. Fueki: Diffusion of oxide ion vacancies in perovskite-type oxides. J. Solid State Chem. 73, 179 (1988).
S.E. Dann, D.B. Currie, M.T. Weller, M.F. Thomas, and A.D. Al-Rawwas: The effect of oxygen stoichiometry on phase relations and structure in the system La1-xSrxFeO3-δ (0 ≤ x ≤ 1, 0 ≤ δ ≤ 0.5). J. Solid State Chem. 109, 134 (1994).
S. Baumann, F. Schulze-Küppers, S. Roitsch, M. Betz, M. Zwick, E.M. Pfaff, W.A. Meulenberg, J. Mayer, and D. Stöver: Influence of sintering conditions on microstructure and oxygen permeation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) oxygen transport membranes. J. Membr. Sci. 359, 102 (2010).
L. Guironnet: Compréhension de l'influence Des Paramètres Micro et Nano Structuraux Sur Les Performances Électrochimiques de Conducteurs Mixtes. Thèse de doctorat, Limoges, 2017.
L. Guironnet, P-M. Geffroy, N. Tessier-Doyen, A. Boulle, N. Richet, and T. Chartier: The surface roughness effect on electrochemical properties of La0.5Sr0.5Fe0.7Ga0.3O3-δ perovskite for oxygen transport membranes. J. Membr. Sci. 588, 117199 (2019).
M. Reichmann, P-M. Geffroy, J. Fouletier, N. Richet, and T. Chartier: Effect of cation substitution in the A site on the oxygen semi-permeation flux in La0.5A0.5Fe0.7Ga0.3O3−δ and La0.5A0.5Fe0.7Co0.3O3−δ dense perovskite membranes with A = Ca, Sr and Ba (Part I). J. Power Sources 261, 175 (2014).
R.A. De Souza: A universal empirical expression for the isotope surface exchange coefficients (k*) of acceptor-doped perovskite and fluorite oxides. Phys. Chem. Chem. Phys. 8, 890 (2006).
R.E. van Doorn, I.C. Fullarton, R.A. de Souza, J.A. Kilner, H.J.M. Bouwmeester, and A.J. Burggraaf: Surface oxygen exchange of La0.3Sr0.7CoO3−δ. Solid State Ion. 96, 1 (1997).
R.A. De Souza, J.A. Kilner, and J.F. Walker: A SIMS study of oxygen tracer diffusion and surface exchange in La0.8Sr0.2MnO3+δ. Mater. Lett. 43, 43 (2000).
L. Guironnet, P-M. Geffroy, F. Jouay, C. Pagnoux, N. Richet, and T. Chartier: La0.6Sr0.4Fe0.8Co0.2O3-δ electrophoretic coating for oxygen transport membranes. Chem. Eng. Sci. X 1, 100008 (2019).
J. Fouletier, P. Fabry, and M. Kleitz: Electrochemical semipermeability and the electrode microsystem in solid oxide electrolyte cells. J. Electrochem. Soc. 123, 204 (1976).
J. Fouletier, H. Seinera, and M. Kleitz: Measurement and regulation of oxygen content in selected gases using solid electrolyte cells. II. Differential gauge. J. Appl. Electrochem. 5, 177 (1975).
J. Fouletier, E. Mantel, and M. Kleitz: Performance characteristics of conventional oxygen gauges. Solid State Ion. 6, 1 (1982).
Author information
Authors and Affiliations
Corresponding author
Supplementary materials
Supplementary materials
To view supplementary material for this article, please visit https://doi.org/10.1557/jmr.2020.230.
Rights and permissions
About this article
Cite this article
Deronzier, E., Chartier, T. & Geffroy, PM. Oxygen semi-permeation properties of La1−xSrxFeO3−δ perovskite membranes under high oxygen gradient. Journal of Materials Research 35, 2506–2515 (2020). https://doi.org/10.1557/jmr.2020.230
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2020.230