Skip to main content
Log in

Thermal annealing influence on structural, magnetic, electronic, and mechanical properties of off-stoichiometric Ni40Cu10Mn35Ti15 all-d-metal Heusler alloy

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We have synthesized off-stoichiometric Ni40Cu10Mn35Ti15 all-d-metal Heusler alloy with a B2 cubic crystal structure by an arc melting process and investigated its structural, magnetic, electronic, thermal, and mechanical properties under the influence of a single-step thermal annealing. The compound exhibits an antiferromagnetic ordering accompanied by thermal hysteresis indicating a first-order magneto-structural transition. Curie–Weiss molecular field analysis reveals the presence of ferromagnetic interactions competing with long-range antiferromagnetic ordering. Thermal annealing leads to the appearance of a heat capacity sharp peak around antiferromagnetic transition. Electrical resistivity measurements display abrupt changes close to the magneto-structural transition revealing the strong coupling among spin, lattice, and charge degrees of freedom characteristic of a martensitic transition (MT). We have also evaluated its mechanical properties from microhardness measurements, and the results indicate that this alloy exhibits ductile behavior. The occurrence of MT associated with improved ductility is an essential combination for technological application as shape-memory alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, and K. Ishida: Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439, 957 (2006).

    Article  CAS  Google Scholar 

  2. O. Gutfleisch, M.A. Willard, E. Bruck, C.H. Chen, S.G. Sankar, and J.P. Liu: Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient. Adv. Mater. 23, 821 (2011).

    Article  CAS  Google Scholar 

  3. D. Pal, A. Ghosh, and K. Mandal: Large inverse magnetocaloric effect and magnetoresistance in nickel rich Ni52Mn34Sn14 Heusler alloy. J. Magn. Magn. Mater. 360, 183 (2014).

    Article  CAS  Google Scholar 

  4. N. Hassan, F. Chen, M. Zhang, I.A. Shah, J. Liu, Y. Gong, G. Xu, and F. Xu: Realization of magnetostructural coupling and a large magnetocaloric effect in the MnCoGe1+x system. J. Magn. Magn. Mater. 439, 120 (2017).

    Article  CAS  Google Scholar 

  5. J. Liu, T. Gottschall, K.P. Skokov, J.D. Moore, and O. Gutfleisch: Giant magnetocaloric effect driven by structural transitions. Nat. Mater. 11, 620 (2012).

    Article  CAS  Google Scholar 

  6. Z.H. Liu, X.Q. Ma, Z.Y. Zhu, H.Z. Luo, G.D. Liu, J.L. Chen, G.H. Wu, X. Zhang, and J.Q. Xiao: Magnetoresistance in ferromagnetic shape memory alloy NiMnFeGa. J. Magn. Magn. Mater. 323, 2192 (2011).

    Article  CAS  Google Scholar 

  7. V. Srivastava, Y. Song, K. Bhatti, and R.D. James: The direct conversion of heat to electricity using multiferroic alloys. Adv. Energy Mater. 1, 97 (2011).

    Article  CAS  Google Scholar 

  8. C. Felser and A. Hirohata: Heusler Alloys: Properties, Growth, Applications (Springer-Verlag, Berlin, Germany, 2016).

    Book  Google Scholar 

  9. G.J. Li, E.K. Liu, H.G. Zhang, Y.J. Zhang, G.Z. Xu, H.Z. Luo, H.W. Zhang, W.H. Wang, and G.H. Wu: Role of covalent hybridization in the martensitic structure and magnetic properties of shape-memory alloys: The case of Ni50Mn5+xGa35-xCu10. Appl. Phys. Lett. 102, 062407 (2013).

    Article  CAS  Google Scholar 

  10. J.G. Tan, Z.H. Liu, Y.J. Zhang, G.T. Li, H.G. Zhang, G.D. Liu, and X.Q. Ma: Site preference and tetragonal distortion of Heusler alloy Mn-Ni-V. Results Phys. 12, 1182 (2019).

    Article  Google Scholar 

  11. F. Meng, H. Hao, Y. Ma, X. Guo, and H. Luo: Site preference of Zr in Heusler alloys Zr2YAl (Y = Cr, Mn, Fe, Co, Ni) and its influence on the electronic properties. J. Alloys Compd. 695, 2995 (2017).

    Article  CAS  Google Scholar 

  12. Y. Han, M. Wu, Y. Feng, Z. Cheng, T. Lin, T. Yang, R. Khenatae, and X. Wanga: Competition between cubic and tetragonal phases in all-d-metal Heusler alloys, X2-xMn1+xV (X=Pd, Ni, Pt, Ag, Au, Ir, Co; x=1, 0): a new potential direction of the Heusler family. IUCr J. Mater. Comput. 6, 465 (2019).

    Article  CAS  Google Scholar 

  13. J. Shena, Q. Zeng, H. Zhang, X. Xia, E. Liu, W. Wanga, and G. Wu: Atomic configuration, unusual lattice constant change, and tunable ferromagnetism in all-d-metal Heusler alloys Fe2CrV-FeCr2V. J. Magn. Magn. Mater. 492, 165661 (2019).

    Article  CAS  Google Scholar 

  14. Z.Y. Wei, E.K. Liu, J.H. Chen, Y. Li, G.D. Liu, H.Z. Luo, X.K. Xi, H.W. Zhang, W.H. Wang, and G.H. Wu: Realization of multifunctional shape-memory ferromagnets in all-d-metal Heusler phases. Appl. Phys. Lett. 107, 022406 (2015).

    Article  CAS  Google Scholar 

  15. A. Aznar, A. Gràcia-Condal, A. Planes, P. Lloveras, M. Barrio, J-L. Tamarit, W. Xiong, D. Cong, C. Popescu, and L. Mañosa: Giant barocaloric effect in all-d-metal Heusler shape memory alloys. Phys. Rev. Mater. 3, 044406 (2019).

    Article  CAS  Google Scholar 

  16. D. Cong, W. Xiong, A. Planes, Y. Ren, L. Mañosa, P. Cao, Z. Nie, X. Sun, Z. Yang, X. Hong, and Y. Wang: Colossal elastocaloric effect in ferroelastic Ni-Mn-Ti alloys. Phys. Rev. Lett. 122, 255703 (2019).

    Article  CAS  Google Scholar 

  17. N. Hassan, I.A. Shah, M. Jelani, M. Naeem, S. Riaz, S. Naseem, F. Xu, and Z. Ullah: Effect of Ni-Mn ratio on structural, martensitic and magnetic properties of Ni-Mn-Co-Ti ferromagnetic shape memory alloys. Mater. Res. Express 5, 086102 (2018).

    Article  CAS  Google Scholar 

  18. Q. Zeng, J. Shen, H. Zhang, J. Chen, B. Ding, X. Xi, E. Liu, W. Wang, and G. Wu: Electronic behavior during martensitic transformations in all-d-metal Heusler alloys. J. Phys. Condens. Matter 31, 425401 (2019).

    Article  CAS  Google Scholar 

  19. G.J. Li, E.K. Liu, H.G. Zhang, J.F. Qian, H.W. Zhang, J.L. Chen, W.H. Wang, and G.H. Wu: Unusual lattice constant changes and tunable magnetic moment compensation in Mn50−xCo25Ga25+x alloys. Appl. Phys. Lett. 101, 102402 (2012).

    Article  CAS  Google Scholar 

  20. L. Ma, W.H. Wang, C.M. Zhen, D.L. Hou, X.D. Tang, E.K. Liu, and G.H. Wu: Polymorphic magnetization and local ferromagnetic structure in Co-doped Mn2NiGa alloys. Phys. Rev. B 84, 224404 (2011).

    Article  CAS  Google Scholar 

  21. T. Graf, C. Felser, and S.S.S. Parkin: Simple rules for the understanding of Heusler compounds. Prog. Solid State Chem. 39, 1 (2011).

    Article  CAS  Google Scholar 

  22. T. Roy and A. Chakrabarti: Ab initio study of effect of Co substitution on the magnetic properties of Ni and Pt-based Heusler alloys. Phys. Lett. A 381, 1449 (2017).

    Article  CAS  Google Scholar 

  23. E. Şaşıoğlu, L.M. Sandratskii, and P. Bruno: Role of conduction electrons in mediating exchange interactions in Mn-based Heusler alloys. Phys. Rev. B 77, 064417 (2008).

    Article  CAS  Google Scholar 

  24. I. Dubenko, T. Samanta, A.K. Pathak, A. Kazakov, V. Prudnikov, S. Stadler, A. Granovsky, A. Zhukov, and N. Ali: Magnetocaloric effect and multifunctional properties of Ni–Mn-based Heusler alloys. J. Magn. Magn. Mater. 324, 3530 (2012).

    Article  CAS  Google Scholar 

  25. J. Karel, F. Bernardi, C. Wang, R. Stinshoff, N-O. Born, S. Ouardi, U. Burkhardt, G.H. Fecher, and C. Felser: Evidence for localized moment picture in Mn-based Heusler compounds. Phys. Chem. Chem. Phys. 17, 31707 (2015).

    Article  CAS  Google Scholar 

  26. P. Lázpita, J.M. Barandiarán, J. Gutiérrez, J. Feuchtwanger, V.A. Chernenko, and M.L. Richard: Magnetic moment and chemical order in off-stoichiometric Ni–Mn–Ga ferromagnetic shape memory alloys. New J. Phys. 13, 033039 (2011).

    Article  CAS  Google Scholar 

  27. P.J. Webster, K.R.A. Ziebeck, S.L. Town, and M.S. Peak: Magnetic order and phase transformation in Ni2MnGa. Phil. Mag. B 49, 295 (1984).

    Article  CAS  Google Scholar 

  28. S.W. D’ Souza, A. Chakrabarti, and S.R. Barman: Magnetic interactions and electronic structure of Ni–Mn–In. J. Electron Spectrosc. 208, 33 (2016).

    Article  CAS  Google Scholar 

  29. S. Imada, A. Yamasaki, T. Kanomata, T. Muro, A. Sekiyama, and S. Suga: Composition dependence of Ni magnetic moment in Ni–Mn-based Heusler-type intermetallic compounds. J. Magn. Magn. Mater. 310, 1857 (2007).

    Article  CAS  Google Scholar 

  30. J.D. Zou, J. Liu, and M. Yan: Crystal structure and magnetic properties of GdSi1.78, Gd(Si0.684Ge0.316)1.78, GdGe1.57, and GdSn2 compounds. J. Magn. Magn. Mater. 385, 77 (2015).

    Article  CAS  Google Scholar 

  31. K. Gosh, C. Mazundar, R. Ranganathan, and S. Mukherjee: Griffiths phase behaviour in a frustrated antiferromagnetic intermetallic compound. Sci. Rep. 5, 15801 (2015).

    Article  CAS  Google Scholar 

  32. C. Magen, P.A. Algarabel, L. Morellon, J.P. Araújo, C. Ritter, M.R. Ibarra, A.M. Pereira, and J.B. Sousa: Observation of a Griffiths-like phase in the magnetocaloric compound, Tb5Si2Ge2. Phys. Rev. Lett. 167201, 96 (2006).

    Google Scholar 

  33. B. Malaman and G. Venturini: Magnetic structures of LFexSn2 (L = Tb–Tm; 0.1<x<0.15). J. Alloys Compd. 494, 44 (2010).

    Article  CAS  Google Scholar 

  34. N. Ben Amor, M. Bejar, E. Dhahri, M.A. Valente, P. Lachkar, and E.K. Hlil: Magnetic and specific heat studies of the frustrated Er2Mn2O7 compound. J. Rare Earth 31, 54 (2013).

    Article  CAS  Google Scholar 

  35. K. Ghosh, C. Mazumdar, R. Ranganathan, S. Mukherjee, and M. De Raychaudhury: Structural correlation with the Griffiths phase in disordered magnetic systems. Phys. Rev. B 98, 184419 (2018).

    Article  CAS  Google Scholar 

  36. J-H. Chen, N.M. Bruno, I. Karaman, Y. Huang, J. Li, and J.H. Ross, Jr.: Calorimetric and magnetic study for Ni50Mn36In14 and relative cooling power in paramagnetic inverse magnetocaloric systems. J. Appl. Phys. 116, 203901 (2014).

    Article  CAS  Google Scholar 

  37. J. Sharma, A.A. Coelho, D.V.M. Repaka, R.V. Ramanujan, and K.G. Suresh: Pressure induced martensitic transition, magnetocaloric and magneto-transport properties in Mn-Ni-Sn Heusler alloy. J. Magn. Magn. Mater. 487, 16530 (2019).

    Article  CAS  Google Scholar 

  38. S. Konoplyuk, V. Kokorin, A. Mashirov, E. Dilmieva, and A. Dalinger: Giant reversible stress-induced change of resistivity in Ni-Mn-In-Co alloys. J. Appl. Phys. 125, 195103 (2019).

    Article  CAS  Google Scholar 

  39. K. Koyama, H. Okada, and K. Watanabe: Observation of large magnetoresistance of magnetic Heusler alloy Ni50Mn36Sn14 in high magnetic fields. Appl. Phys. Lett. 89, 182510 (2006).

    Article  CAS  Google Scholar 

  40. R.A.A. Khan, R. Ghomashchi, Z. Xie, and L. Chen: Ferromagnetic shape memory Heusler materials: Synthesis, microstructure characterization and magnetostructural properties. Materials 11, 988 (2018).

    Article  CAS  Google Scholar 

  41. K. Liu, S. Ma, C. Ma, X. Han, K. Yu, S. Yang, Z. Zhang, Y. Song, X. Luo, C. Chen, S. Ur Rehman, and Z. Zhong: Martensitic transformation and giant magneto-functional properties in all-d-metal Ni-Co-Mn-Ti alloy ribbons. J. Alloys Compd. 790, 78 (2019).

    Article  CAS  Google Scholar 

  42. H-L. Yan, L-D. Wang, H-X. Liu, X-M. Huang, N. Jia, Z-B. Li, B. Yang, Y-D. Zhang, C. Esling, X. Zhao, and L. Zuo: Giant elastocaloric effect and exceptional mechanical properties in an all-d-metal Ni–Mn–Ti alloy: Experimental and ab-initio studies. Mater. Des. 184, 108180 (2019).

    Article  CAS  Google Scholar 

  43. S.M. Yang, Y. Kong, Y. Du, L.M. Shen, and Y.G. Shen: First-principles prediction of structural, mechanical and magnetic properties in Ni2MnAl. Comput. Mater. Sci. 123, 52 (2016).

    Article  CAS  Google Scholar 

  44. G. Rogl, A. Grytsiv, M. Gürth, A. Tavassoli, C. Ebner, A. Wünschek, S. Puchegger, V. Soprunyuk, W. Schranz, E. Bauer, H. Müller, M. Zehetbauer, and P. Rogl: Mechanical properties of half-Heusler alloys. Acta Mater. 107, 178 (2016).

    Article  CAS  Google Scholar 

  45. S. Ozdemir Kart and T. Cagin: Elastic properties of Ni2MnGa from first-principles calculations. J. Alloys Compd. 508, 177 (2010).

    Article  CAS  Google Scholar 

  46. S.F. Pugh: Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. J. Sci. 45, 823 (1954).

    Article  CAS  Google Scholar 

  47. F. Cardelli: Materials Handbook: A Concise Desktop Reference, 2nd ed. (Springer-Verlag, London, England, 2008).

    Google Scholar 

  48. A.C. Larson and R.B. Von Dreele: General Structure Analysis System (GSAS). Los Alamos National Laboratory Report No. LAUR 86-748, 2004.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Multiuser Central Facilities (CEM–UFABC) for the experimental support. Also, the authors are grateful to PNPD/CAPES fellowship and FAPESP under Grant Nos. 2017/20989-9, 2017/02317-2, and 2018/15682-3 for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose A. Souza.

Data Availability

Data Availability

The data that support the findings of this study are available from the corresponding author (J.A.S.) upon reasonable request.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Paula, V.G., de Oliveira, L.S., Mendes Filho, A.A. et al. Thermal annealing influence on structural, magnetic, electronic, and mechanical properties of off-stoichiometric Ni40Cu10Mn35Ti15 all-d-metal Heusler alloy. Journal of Materials Research 35, 3004–3011 (2020). https://doi.org/10.1557/jmr.2020.217

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.217

Navigation