Abstract
In this study, we report a simple one-pot synthesis of iron oxide nanoparticles (IONPs) modified with thermoresponsive polymers potentially applicable for nucleic acid capture. Ferrous (Fe2+) and ferric (Fe3+) ions were coprecipitated to a dispersion of previously prepared poly(N-isopropylacrylamide-co-2-aminoethyl methacrylate) P(NIPAAm-co-AEM) for in situ synthesis of magnetite (Fe3O4) and concurrent surface modification of Fe3O4 with the polymer to obtain magnetic nanocomposites. Fourier-transform infrared (FTIR) spectroscopy analysis reveals the surface modification of Fe3O4 with P(NIPAAm-co-AEM) and P(NIPAAm) as functional and control polymers, respectively. Fe3O4@P(NIPAAm-co-AEM) and Fe3O4@P(NIPAAm) nanocomposites’ surfaces contain 7.5 and 2.3 wt% of immobilized polymers, respectively. Vibrating sample magnetometry (VSM) result indicates a high saturation of magnetization value, 75 emu/g, for Fe3O4@P(NIPAAm-co-AEM) nanocomposites. The hydrodynamic diameter of Fe3O4@P(NIPAAm-co-AEM) in water changes depending on pH and temperature. A study for deoxyribonucleic acid (DNA) capture ability of Fe3O4@P(NIPAAm-co-AEM) nanocomposites shows a maximum 18.5 mg/g of DNA can be adsorbed on Fe3O4@P(NIPAAm-co-AEM).
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
J. Chomouckaa, J. Drbohlavova, D. Huska, V. Adam, R. Kizek, and J. Hubalek: Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res. 62, 144 (2010).
J. Yang, R. Wang, and D. Xie: Precisely controlled incorporation of drug nanoparticles in polymer vesicles by amphiphilic copolymer tethers. Macromolecules 51, 6810 (2018).
X. Mou, Z. Ali, S. Li, and N. He: Applications of magnetic nanoparticles in targeted drug delivery system. J. Nanosci. Nanotechnol. 15, 54 (2015).
S. Kayal and R.V. Ramanujan: Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mat. Sci. Eng. C 30, 484 (2010).
H. Nosrati, E. Javani, M. Salehiabar, H.K. Manjili, S. Davaran, and H. Danafar: Biocompatibility and anticancer activity of L-phenyl alanine-coated iron oxide magnetic nanoparticles as potential chrysin delivery system. J. Mater. Res. 33, 1602 (2018).
M. Zhao, M.F. Kircher, L. Josephson, and R. Weissleder: Differential conjugation of peptide to superparamagnetic nanoparticles and its effect on cellular uptake. Bioconjugate Chem. 13, 840 (2002).
J.P. Butler and S.M. Kelly: A model for cytoplasmic rheology consistent with magnetic twisting cytometry. Biorheology 35, 193 (1998).
K. Hayashi, T. Shimizu, H. Asano, W. Sakamoto, and T. Yogo: Synthesis of spinel iron oxide nanoparticle/organic hybrid for hyperthermia. J. Mater. Res. 23, 3415 (2008).
J.W.M. Bulte, T. Douglas, B. Witwer, S.C. Zhang, E. Strable, B.K. Lewis, H. Zywicke, B. Miller, P.V. Gelderen, B.M. Moskowitz, I.D. Duncan, and J.A. Frank: Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat. Biotechnol. 19, 1141 (2001).
W. Ling, M. Wang, C. Xiong, D. Xie, Q. Chen, X. Chu, X. Qiu, Y. Li, and X. Kiao: Synthesis, surface modification, and applications of magnetic iron oxide nanoparticles. J. Mater. Res. 34, 1824 (2019).
M.M. Rahman and A. Elaissari: Nucleic acid sample preparation for in vitro molecular diagnosis: From conventional techniques to biotechnology. Drug. Discov. Today 17, 1199 (2012).
W.S. Arora: Superparamagnetic iron oxide nanoparticles: Magnetic nanoplatforms as drug carriers. Int. J. Nanomedicine 7, 3445 (2012).
M. M. Rahman, E. D. Giol, G. Cama, S. V. Vlierberghe, P. Dubruel: Stimuli-responsive hydrogels for tissue engineering. In Fundamental Principles. RSC Smart Materials Series, Qun Wang, ed. (2016); p 62. doi:10.1039/9781782626756-00062.
Y. Yong, Y. Bai, Y. Li, L. Lin, Y. Cui, and C. Xia: Preparation and application of polymer-grafted magnetic nanoparticles for lipase immobilization. J. Magn. Magn. Mater. 320, 2350 (2008).
S. Davaran, A. Akbarzadeh, K. Nejati-Koshki, S. Alimohammadi, M.F. Ghamari, M.M. Soghrati, A. Rezaei, and A.A. Khandaghi: In vitro studies of P(NIPAAm-MAA-VP) copolymer-coated magnetic nanoparticles for controlled anticancer drug release. J. Encap. Adsorp. Sci. 3, 108 (2013).
M. Rahimi, A. Wadajkar, K. Subramanian, M. Yousef, W. Cui, J.T. Hsieh, and K.T. Nguyen: In vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled drug delivery. Nanomedicine 6, 672 (2010).
P. Tartaj, M.D.P. Morales, S. Veintemillas-Verdaguer, T. González-Carreno, and C.J. Serna: The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys. 36, R182 (2003).
L.M. Geever, D.M. Devine, M.D.J. Nugent, J.E. Kennedy, J.G. Lyons, and C.L. Higginbotham: The synthesis, characterization, phase behaviour and swelling of temperature sensitive physically crosslinked poly(1-vinyl-2-pyrrolidinone)/poly(N-isopropylacrylamide) hydrogels. Eur. Polym. J. 42, 69 (2006).
L.M. Geever, D.M. Devine, M.J.D. Nugent, J.E. Kennedy, J.G. Lyons, A. Hanley, and C.L. Higginbotham: Lower critical solution temperature control and swelling behavior of physically crosslinked thermosensitive copolymers based on N-isopropylacrylamide. Eur. Polym. J. 42, 2540 (2006).
J.L. Zhang, R.S. Srivastava, and R.D.K. Misra: Core–shell magnetite nanoparticles surface encapsulated with smart stimuli-responsive polymer: Synthesis, characterization, and LCST of viable drug-targeting delivery system. Langmuir 2311, 6342 (2007).
A. Akbarzadeh, N. Zarghami, H. Mikaeili, D. Asgari, A.M. Goganian, H.K. Khiabani, M. Samiei, and S. Davaran: Synthesis, characterization, and in vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled delivery of doxorubicin. Nanotechnol. Sci. Appl. 5, 13 (2012).
M. Tanjim, M.A. Rahman, M.M. Rahman, H. Minami, S.M. Hoque, M.K. Sharafat, M.A. Gafur, and H. Ahmad: Mesoporous magnetic silica particles modified with stimuli-responsive P(NIPAM–DMA) valve for controlled loading and release of biologically active molecules. Soft Matter 14, 5469 (2018).
M.M. Rahman, Y. Nahar, W. Ullah, A. Elaissari, and H. Ahmad: Incorporation of iron oxide nanoparticles into temperature-responsive poly(N-isopropylacrylamide-co-acrylic acid) P(NIPAAm-AA) polymer hydrogel. J. Polym. Res. 22, 33 (2015).
M.M. Rahman and A. Elaissari: Temperature and magnetic dual responsive microparticles for DNA separation. Sep. Purif. Technol. 81, 286 (2011).
D.K. Yi, S.T. Selvan, S.S. Lee, G.C. Papaefthymiou, D. Kundaliya, and J.Y. Ying: Silica-coated nanocomposites of magnetic nanoparticles and quantum dots. J. Am. Chem. Soc. 127, 4990 (2005).
M.M. Rahman, M.M. Chehimi, H. Fessi, and A. Elaissari: Highly temperature responsive core-shell magnetic particles: Synthesis, characterization and colloidal properties. J. Colloid. Inter. Sci. 360, 556 (2011).
A.P. Majewski, A. Schallon, V. Jérôme, R. Freitag, A.H.E. Müller, and H. Schmal: Dual-responsive magnetic core–shell nanoparticles for nonviral gene delivery and cell separation. Biomacromolecules 13, 857 (2012).
Y. Nahar, M.A. Rahman, M.K. Hossain, M.K. Sharafat, M.R. Karim, A. Elaissari, B. Ochiai, H. Ahmad, and M.M. Rahman: A facile one-pot synthesis of poly(acrylic acid)-functionalized magnetic iron oxide nanoparticles for suppressing reactive oxygen species generation and adsorption of biocatalyst. Mater. Res. Express 7, 016102 (2020).
H. Zhu, J. Tao, W. Wang, Y. Zhou, P. Li, Z. Li, K. Yan, S. Wu, K.W.K. Yeung, Z. Xu, H. Xu, and P.K. Chu: Magnetic, fluorescent, and thermo-responsive Fe3O4/rare earth incorporated poly(St-NIPAm) core shell colloidal nanoparticles in multimodal optical/magnetic resonance imaging probes. Biomaterials 34, 2296 (2013).
A. Zhou, H. Luo, Q. Wang, L. Chen, T.C. Zhang, and T. Tao: Magnetic thermoresponsive ionic nanogels as novel draw agents in forward osmosis. RSC Adv. 5, 15359 (2015).
K.L. Deng, H. Tian, P.F. Zhang, X.B. Ren, and H.B. Zhong: Synthesis and characterization of a novel temperature-pH responsive copolymer of 2-hydroxypropyl acrylate and aminoethyl methacrylate hydrochloric salt. eXPRESS Polym. Lett. 3, 97 (2009).
A.S. Paulus, R. Heinzler, H.W. Ooi, and M. Franzre: Temperature-switchable agglomeration of magnetic particles designed for continuous separation processes in biotechnology. ACS Appl. Mater. Interfaces 7, 14279 (2015).
A.K. Boal, K. Das, M. Gray, and V.M. Rotello: Monolayer exchange chemistry of γ-Fe2O3 nanoparticles. Chem. Mater. 14, 2628 (2002).
K. Tao, H. Dou, and K. Sun: Facile interfacial coprecipitation to fabricate hydrophilic amine-capped magnetite nanoparticles. Chem. Mater. 18, 5273 (2006).
A. Akbarzadeh, M. Samiei, S.W. Joo, M. Anzaby, Y. Hanifehpour, H.T. Nasrabadi, and S. Davaran: Synthesis, characterization and in vitro studies of doxorubicin-loaded magnetic nanoparticles grafted to smart copolymers on A549 lung cancer cell line. J. Nanobiotechnology 10, 1 (2012).
L.M. Sanchez, D.A. Martin, V.A. Alvarez, and J.S. Gonzalez: Polyacrylic acid-coated iron oxide magnetic nanoparticles: The polymer molecular weight influence. Colloids Surf. A Physiochem. Eng. Asp. 543, 28 (2018).
H. Ahmad, M.K. Sharafat, M.A. Alam, M.M. Rahman, K. Tauer, H. Minami, M.S. Sultana, B.K. Das, and R. Shabnam: Magnetite loaded cross-linked polystyrene composite particles prepared by modified suspension polymerization and their potential use as adsorbent for arsenic (III). Macromol. Res. 25, 671 (2017).
R.H. Pelton and P. Chibante: Preparation of aqueous lattices with N-isopropylacrylamide. Colloids Surf. 20, 247 (1986).
M. Okubo, H. Ahmad, and M. Komura: Preparation of temperature-sensitive polymer particles having different lower critical solution temperatures. Colloid Polym. Sci. 274, 1188 (1996).
S. Ghosh, W. Jiang, J.D. McClements, and B. Xing: Colloidal stability of magnetic iron oxide nanoparticles: Influence of natural organic matter and synthetic polyelectrolytes. Langmuir 27, 8036 (2011).
N. Bao, L. Shen, Y. Wang, P. Padhan, and A. Gupta: A facile thermolysis route to monodisperse ferrite nanocrystals. J. Am. Chem. Soc. 129, 12374 (2007).
N.D. Phu, D.T. Ngo, H.L. Huy, N.H. Luong, and H.H. Nguyen: Crystallization process and magnetic properties of amorphous iron oxide nanoparticles. J. Phys. D Appl. Phys. 44, 34 (2011).
V.A.J. Silva, P.L. Andrade, M.P.C. Silva, A. Bustamante, L.D.L.S. Valladares, and J. Albino Aguiar: Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides. J Magn. Magn. Mater. 343, 138 (2013).
Acknowledgments
The authors acknowledge the Ministry of Science and Technology, Dhaka, Bangladesh (Project No. PHY's 455) for financial support. We also gratefully acknowledge Mr. Daisuke Matsubara, Yamagata University, Japan for SEM and TEM analyses, and the Central Science Laboratory, Rajshahi University for providing instrumental support. Sadia Hossain is thankful to the Ministry of Science and Technology (MOSICT) Bangladesh for National Science and Technology (NST) fellowship during her M.Sc. study.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hossain, S., Rahman, M., Nahar, Y. et al. A simple in situ synthesis of iron oxide magnetic nanoparticles embedded in thermosensitive polymer for DNA capture. Journal of Materials Research 35, 2441–2450 (2020). https://doi.org/10.1557/jmr.2020.192
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2020.192