Skip to main content
Log in

A simple in situ synthesis of iron oxide magnetic nanoparticles embedded in thermosensitive polymer for DNA capture

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, we report a simple one-pot synthesis of iron oxide nanoparticles (IONPs) modified with thermoresponsive polymers potentially applicable for nucleic acid capture. Ferrous (Fe2+) and ferric (Fe3+) ions were coprecipitated to a dispersion of previously prepared poly(N-isopropylacrylamide-co-2-aminoethyl methacrylate) P(NIPAAm-co-AEM) for in situ synthesis of magnetite (Fe3O4) and concurrent surface modification of Fe3O4 with the polymer to obtain magnetic nanocomposites. Fourier-transform infrared (FTIR) spectroscopy analysis reveals the surface modification of Fe3O4 with P(NIPAAm-co-AEM) and P(NIPAAm) as functional and control polymers, respectively. Fe3O4@P(NIPAAm-co-AEM) and Fe3O4@P(NIPAAm) nanocomposites’ surfaces contain 7.5 and 2.3 wt% of immobilized polymers, respectively. Vibrating sample magnetometry (VSM) result indicates a high saturation of magnetization value, 75 emu/g, for Fe3O4@P(NIPAAm-co-AEM) nanocomposites. The hydrodynamic diameter of Fe3O4@P(NIPAAm-co-AEM) in water changes depending on pH and temperature. A study for deoxyribonucleic acid (DNA) capture ability of Fe3O4@P(NIPAAm-co-AEM) nanocomposites shows a maximum 18.5 mg/g of DNA can be adsorbed on Fe3O4@P(NIPAAm-co-AEM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1:
Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Similar content being viewed by others

References

  1. J. Chomouckaa, J. Drbohlavova, D. Huska, V. Adam, R. Kizek, and J. Hubalek: Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res. 62, 144 (2010).

    Article  CAS  Google Scholar 

  2. J. Yang, R. Wang, and D. Xie: Precisely controlled incorporation of drug nanoparticles in polymer vesicles by amphiphilic copolymer tethers. Macromolecules 51, 6810 (2018).

    Article  CAS  Google Scholar 

  3. X. Mou, Z. Ali, S. Li, and N. He: Applications of magnetic nanoparticles in targeted drug delivery system. J. Nanosci. Nanotechnol. 15, 54 (2015).

    Article  CAS  Google Scholar 

  4. S. Kayal and R.V. Ramanujan: Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mat. Sci. Eng. C 30, 484 (2010).

    Article  CAS  Google Scholar 

  5. H. Nosrati, E. Javani, M. Salehiabar, H.K. Manjili, S. Davaran, and H. Danafar: Biocompatibility and anticancer activity of L-phenyl alanine-coated iron oxide magnetic nanoparticles as potential chrysin delivery system. J. Mater. Res. 33, 1602 (2018).

    Article  CAS  Google Scholar 

  6. M. Zhao, M.F. Kircher, L. Josephson, and R. Weissleder: Differential conjugation of peptide to superparamagnetic nanoparticles and its effect on cellular uptake. Bioconjugate Chem. 13, 840 (2002).

    Article  CAS  Google Scholar 

  7. J.P. Butler and S.M. Kelly: A model for cytoplasmic rheology consistent with magnetic twisting cytometry. Biorheology 35, 193 (1998).

    Article  CAS  Google Scholar 

  8. K. Hayashi, T. Shimizu, H. Asano, W. Sakamoto, and T. Yogo: Synthesis of spinel iron oxide nanoparticle/organic hybrid for hyperthermia. J. Mater. Res. 23, 3415 (2008).

    Article  CAS  Google Scholar 

  9. J.W.M. Bulte, T. Douglas, B. Witwer, S.C. Zhang, E. Strable, B.K. Lewis, H. Zywicke, B. Miller, P.V. Gelderen, B.M. Moskowitz, I.D. Duncan, and J.A. Frank: Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat. Biotechnol. 19, 1141 (2001).

    Article  CAS  Google Scholar 

  10. W. Ling, M. Wang, C. Xiong, D. Xie, Q. Chen, X. Chu, X. Qiu, Y. Li, and X. Kiao: Synthesis, surface modification, and applications of magnetic iron oxide nanoparticles. J. Mater. Res. 34, 1824 (2019).

    Article  CAS  Google Scholar 

  11. M.M. Rahman and A. Elaissari: Nucleic acid sample preparation for in vitro molecular diagnosis: From conventional techniques to biotechnology. Drug. Discov. Today 17, 1199 (2012).

    Article  CAS  Google Scholar 

  12. W.S. Arora: Superparamagnetic iron oxide nanoparticles: Magnetic nanoplatforms as drug carriers. Int. J. Nanomedicine 7, 3445 (2012).

    Google Scholar 

  13. M. M. Rahman, E. D. Giol, G. Cama, S. V. Vlierberghe, P. Dubruel: Stimuli-responsive hydrogels for tissue engineering. In Fundamental Principles. RSC Smart Materials Series, Qun Wang, ed. (2016); p 62. doi:10.1039/9781782626756-00062.

    Chapter  Google Scholar 

  14. Y. Yong, Y. Bai, Y. Li, L. Lin, Y. Cui, and C. Xia: Preparation and application of polymer-grafted magnetic nanoparticles for lipase immobilization. J. Magn. Magn. Mater. 320, 2350 (2008).

    Article  CAS  Google Scholar 

  15. S. Davaran, A. Akbarzadeh, K. Nejati-Koshki, S. Alimohammadi, M.F. Ghamari, M.M. Soghrati, A. Rezaei, and A.A. Khandaghi: In vitro studies of P(NIPAAm-MAA-VP) copolymer-coated magnetic nanoparticles for controlled anticancer drug release. J. Encap. Adsorp. Sci. 3, 108 (2013).

    Google Scholar 

  16. M. Rahimi, A. Wadajkar, K. Subramanian, M. Yousef, W. Cui, J.T. Hsieh, and K.T. Nguyen: In vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled drug delivery. Nanomedicine 6, 672 (2010).

    Article  CAS  Google Scholar 

  17. P. Tartaj, M.D.P. Morales, S. Veintemillas-Verdaguer, T. González-Carreno, and C.J. Serna: The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys. 36, R182 (2003).

    Article  CAS  Google Scholar 

  18. L.M. Geever, D.M. Devine, M.D.J. Nugent, J.E. Kennedy, J.G. Lyons, and C.L. Higginbotham: The synthesis, characterization, phase behaviour and swelling of temperature sensitive physically crosslinked poly(1-vinyl-2-pyrrolidinone)/poly(N-isopropylacrylamide) hydrogels. Eur. Polym. J. 42, 69 (2006).

    Article  CAS  Google Scholar 

  19. L.M. Geever, D.M. Devine, M.J.D. Nugent, J.E. Kennedy, J.G. Lyons, A. Hanley, and C.L. Higginbotham: Lower critical solution temperature control and swelling behavior of physically crosslinked thermosensitive copolymers based on N-isopropylacrylamide. Eur. Polym. J. 42, 2540 (2006).

    Article  CAS  Google Scholar 

  20. J.L. Zhang, R.S. Srivastava, and R.D.K. Misra: Core–shell magnetite nanoparticles surface encapsulated with smart stimuli-responsive polymer: Synthesis, characterization, and LCST of viable drug-targeting delivery system. Langmuir 2311, 6342 (2007).

    Article  CAS  Google Scholar 

  21. A. Akbarzadeh, N. Zarghami, H. Mikaeili, D. Asgari, A.M. Goganian, H.K. Khiabani, M. Samiei, and S. Davaran: Synthesis, characterization, and in vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled delivery of doxorubicin. Nanotechnol. Sci. Appl. 5, 13 (2012).

    CAS  Google Scholar 

  22. M. Tanjim, M.A. Rahman, M.M. Rahman, H. Minami, S.M. Hoque, M.K. Sharafat, M.A. Gafur, and H. Ahmad: Mesoporous magnetic silica particles modified with stimuli-responsive P(NIPAM–DMA) valve for controlled loading and release of biologically active molecules. Soft Matter 14, 5469 (2018).

    Article  CAS  Google Scholar 

  23. M.M. Rahman, Y. Nahar, W. Ullah, A. Elaissari, and H. Ahmad: Incorporation of iron oxide nanoparticles into temperature-responsive poly(N-isopropylacrylamide-co-acrylic acid) P(NIPAAm-AA) polymer hydrogel. J. Polym. Res. 22, 33 (2015).

    Article  CAS  Google Scholar 

  24. M.M. Rahman and A. Elaissari: Temperature and magnetic dual responsive microparticles for DNA separation. Sep. Purif. Technol. 81, 286 (2011).

    Article  CAS  Google Scholar 

  25. D.K. Yi, S.T. Selvan, S.S. Lee, G.C. Papaefthymiou, D. Kundaliya, and J.Y. Ying: Silica-coated nanocomposites of magnetic nanoparticles and quantum dots. J. Am. Chem. Soc. 127, 4990 (2005).

    Article  CAS  Google Scholar 

  26. M.M. Rahman, M.M. Chehimi, H. Fessi, and A. Elaissari: Highly temperature responsive core-shell magnetic particles: Synthesis, characterization and colloidal properties. J. Colloid. Inter. Sci. 360, 556 (2011).

    Article  CAS  Google Scholar 

  27. A.P. Majewski, A. Schallon, V. Jérôme, R. Freitag, A.H.E. Müller, and H. Schmal: Dual-responsive magnetic core–shell nanoparticles for nonviral gene delivery and cell separation. Biomacromolecules 13, 857 (2012).

    Article  CAS  Google Scholar 

  28. Y. Nahar, M.A. Rahman, M.K. Hossain, M.K. Sharafat, M.R. Karim, A. Elaissari, B. Ochiai, H. Ahmad, and M.M. Rahman: A facile one-pot synthesis of poly(acrylic acid)-functionalized magnetic iron oxide nanoparticles for suppressing reactive oxygen species generation and adsorption of biocatalyst. Mater. Res. Express 7, 016102 (2020).

    Article  CAS  Google Scholar 

  29. H. Zhu, J. Tao, W. Wang, Y. Zhou, P. Li, Z. Li, K. Yan, S. Wu, K.W.K. Yeung, Z. Xu, H. Xu, and P.K. Chu: Magnetic, fluorescent, and thermo-responsive Fe3O4/rare earth incorporated poly(St-NIPAm) core shell colloidal nanoparticles in multimodal optical/magnetic resonance imaging probes. Biomaterials 34, 2296 (2013).

    Article  CAS  Google Scholar 

  30. A. Zhou, H. Luo, Q. Wang, L. Chen, T.C. Zhang, and T. Tao: Magnetic thermoresponsive ionic nanogels as novel draw agents in forward osmosis. RSC Adv. 5, 15359 (2015).

    Article  CAS  Google Scholar 

  31. K.L. Deng, H. Tian, P.F. Zhang, X.B. Ren, and H.B. Zhong: Synthesis and characterization of a novel temperature-pH responsive copolymer of 2-hydroxypropyl acrylate and aminoethyl methacrylate hydrochloric salt. eXPRESS Polym. Lett. 3, 97 (2009).

    Article  CAS  Google Scholar 

  32. A.S. Paulus, R. Heinzler, H.W. Ooi, and M. Franzre: Temperature-switchable agglomeration of magnetic particles designed for continuous separation processes in biotechnology. ACS Appl. Mater. Interfaces 7, 14279 (2015).

    Article  CAS  Google Scholar 

  33. A.K. Boal, K. Das, M. Gray, and V.M. Rotello: Monolayer exchange chemistry of γ-Fe2O3 nanoparticles. Chem. Mater. 14, 2628 (2002).

    Article  CAS  Google Scholar 

  34. K. Tao, H. Dou, and K. Sun: Facile interfacial coprecipitation to fabricate hydrophilic amine-capped magnetite nanoparticles. Chem. Mater. 18, 5273 (2006).

    Article  CAS  Google Scholar 

  35. A. Akbarzadeh, M. Samiei, S.W. Joo, M. Anzaby, Y. Hanifehpour, H.T. Nasrabadi, and S. Davaran: Synthesis, characterization and in vitro studies of doxorubicin-loaded magnetic nanoparticles grafted to smart copolymers on A549 lung cancer cell line. J. Nanobiotechnology 10, 1 (2012).

    Article  CAS  Google Scholar 

  36. L.M. Sanchez, D.A. Martin, V.A. Alvarez, and J.S. Gonzalez: Polyacrylic acid-coated iron oxide magnetic nanoparticles: The polymer molecular weight influence. Colloids Surf. A Physiochem. Eng. Asp. 543, 28 (2018).

    Article  CAS  Google Scholar 

  37. H. Ahmad, M.K. Sharafat, M.A. Alam, M.M. Rahman, K. Tauer, H. Minami, M.S. Sultana, B.K. Das, and R. Shabnam: Magnetite loaded cross-linked polystyrene composite particles prepared by modified suspension polymerization and their potential use as adsorbent for arsenic (III). Macromol. Res. 25, 671 (2017).

    Article  CAS  Google Scholar 

  38. R.H. Pelton and P. Chibante: Preparation of aqueous lattices with N-isopropylacrylamide. Colloids Surf. 20, 247 (1986).

    Article  CAS  Google Scholar 

  39. M. Okubo, H. Ahmad, and M. Komura: Preparation of temperature-sensitive polymer particles having different lower critical solution temperatures. Colloid Polym. Sci. 274, 1188 (1996).

    Article  CAS  Google Scholar 

  40. S. Ghosh, W. Jiang, J.D. McClements, and B. Xing: Colloidal stability of magnetic iron oxide nanoparticles: Influence of natural organic matter and synthetic polyelectrolytes. Langmuir 27, 8036 (2011).

    Article  CAS  Google Scholar 

  41. N. Bao, L. Shen, Y. Wang, P. Padhan, and A. Gupta: A facile thermolysis route to monodisperse ferrite nanocrystals. J. Am. Chem. Soc. 129, 12374 (2007).

    Article  CAS  Google Scholar 

  42. N.D. Phu, D.T. Ngo, H.L. Huy, N.H. Luong, and H.H. Nguyen: Crystallization process and magnetic properties of amorphous iron oxide nanoparticles. J. Phys. D Appl. Phys. 44, 34 (2011).

    Article  CAS  Google Scholar 

  43. V.A.J. Silva, P.L. Andrade, M.P.C. Silva, A. Bustamante, L.D.L.S. Valladares, and J. Albino Aguiar: Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides. J Magn. Magn. Mater. 343, 138 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Ministry of Science and Technology, Dhaka, Bangladesh (Project No. PHY's 455) for financial support. We also gratefully acknowledge Mr. Daisuke Matsubara, Yamagata University, Japan for SEM and TEM analyses, and the Central Science Laboratory, Rajshahi University for providing instrumental support. Sadia Hossain is thankful to the Ministry of Science and Technology (MOSICT) Bangladesh for National Science and Technology (NST) fellowship during her M.Sc. study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahbubor Rahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, S., Rahman, M., Nahar, Y. et al. A simple in situ synthesis of iron oxide magnetic nanoparticles embedded in thermosensitive polymer for DNA capture. Journal of Materials Research 35, 2441–2450 (2020). https://doi.org/10.1557/jmr.2020.192

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.192

Navigation