Skip to main content
Log in

PbS and PbS/CdS quantum dots: Synthesized by photochemical approach, structural, linear and nonlinear response properties, and optical limiting

  • Electronic, Photonic and Magnetic Materials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, PbS and PbS/CdS core–shell quantum dots (QDs) were synthesized by a new photochemical approach. Prepared QDs were characterized by means of x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive x-ray analysis (EDAX), UV–Vis, and Z-scan analyses. Synthesized QDs were in a cubic phase with a spherical morphology, and the crystallite sizes are estimated using the strain–size method. A uniform shift of Bragg diffraction peaks and quenching (200) Bragg plane are interpreted as the growth of the CdS shell. Linear optical properties were investigated using Urbach analysis and Tauc formula. It was found that the density of states of QD conduction and valence bands are three dimensional. The estimated sizes of PbS QDs and PbS/CdS using exciton absorption peaks at room temperature are 1.8 and 2.7 nm, respectively, which are in good agreement with the strain–size plot analysis. The growth of the CdS shell resulted in a considerable decrease in the nonlinearity refractive index and a significant increase in the nonlinear absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. F.D. Martinez-Mancera and J.L. Hernandez-Lopez: Physical characterization and photoluminescence properties of thioglycolic acid-stabilized lead sulfide nanocrystals. Mater. Chem. Phys. 148, 1045 (2014).

    Article  CAS  Google Scholar 

  2. N.B. Pendyala and K.S.R. Koteswara Rao: Identification of surface states in PbS quantum dots by temperature dependent photoluminescence. J. Lumin. 128, 1826 (2008).

    Article  CAS  Google Scholar 

  3. Z.Q. Mamiyev and N.O. Balayeva: Preparation and optical studies of PbS nanoparticles. Opt. Mater. 46, 522 (2015).

    Article  CAS  Google Scholar 

  4. H. Karami, M. Ghasemi, and S.M. Synthesis: Characterization and application of lead sulfide nanostructures as ammonia gas sensing agent. Int. J. Electrochem. Sci. 8, 11661 (2013).

    CAS  Google Scholar 

  5. Y. Zhao, X.H. Liao, J.M. Hong, and J.J. Zhu: Synthesis of lead sulfide nanocrystals via microwave and sonochemical methods. Mater. Chem. Phys. 87, 149 (2004).

    Article  CAS  Google Scholar 

  6. G. Chen, J. Fan, T. Zhao, X. Xu, M. Zhu, and Z. Tang: Microwave-controlled facile synthesis of well-defined PbS hexapods. J. Nanosci. Nanotechnol. 11, 7807 (2011).

    Article  CAS  Google Scholar 

  7. I. Moreels, K. Lambert, D. Smeets, D.D. Muynck, T. Nollet, J.C. Martins, _F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens: Size-dependent optical properties of colloidal PbS quantum dots. Acs Nano 3, 3023 (2009).

    Article  CAS  Google Scholar 

  8. S. Suresh, A. Ramanand, D. Jayaraman, and P. Mani: Review on theoretical aspect of nonlinear optics. Rev. Adv. Mater. Sci. 30, 175 (2012).

    CAS  Google Scholar 

  9. J. Zyss: Molecular Nonlinear Optics Materials, Physics, and Devices (Academic Press, London, 1994).

    Google Scholar 

  10. S. Schmitt-Rink, D.A.B. Miller, and D.S. Chemla: Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures. Phys. Rev. B 32, 6601 (1985).

    Article  CAS  Google Scholar 

  11. M.S. Neo, N. Venkatram, G.S. Li, W.S. Chin, and W. Ji: Synthesis of PbS/CdS core–shell QDs and their nonlinear optical properties. J. Phys. Chem. C 114, 18037 (2010).

    Article  CAS  Google Scholar 

  12. M. Dehgahni, M. Khanzadeh, M. Karimipour, and M. Molaei: Dependence of nonlinear optical properties of Ag2S@ZnS core–shells on Zinc precursor and capping agent. Opt. Laser Technol. 100, 286 (2018).

    Article  Google Scholar 

  13. M. Ebrahaimi, A. Zakery, M. Karimipour, and M. Molaei: Nonlinear optical properties and optical limiting measurements of graphene oxide—Ag@TiO2 compounds. Opt. Mater. 57, 146 (2016).

    Article  Google Scholar 

  14. H. Cheng, Y. Wang, H. Dai, J-B. Han, and X. Li: Nonlinear optical properties of PbS colloidal quantum dots fabricated via solvothermal method. J. Phys. Chem. C 119, 3288 (2015).

    Article  CAS  Google Scholar 

  15. S. Chowdhury, A.M.P. Hussain, G.A. Ahmed, D. Mohanta, and A. Choudhury: Third order nonlinear optical response of PbS quantum dots. Semicond. Phys., Quantum Electron. Optoelectron. 9, 45 (2006).

    Article  CAS  Google Scholar 

  16. H. Yao, S. Takahara, H. Mizuma, T. Kozeki, and T. Hayashi: Linear and nonlinear optical properties of CdS and CdSe nanoparticles stabilized with poly(N-vinyl-2-pyrrolidone. Jpn. J. Appl. Phys. 35, 4633 (1996).

    Article  CAS  Google Scholar 

  17. R.A. Ganeev, M. Morita, A.I. Ryasnyanskii, M. Baba, D. Rau, H. Fujii, M. Suzuki, M. Turu, and H. Kuroda: Nonlinear optical characteristics of CdS and ZnS nanoparticles implanted into zirconium oxide thin films. Opt. Spectrosc. 97, 580 (2004).

    Article  CAS  Google Scholar 

  18. H. Du, G.Q. Xu, W.S. Chin, L. Huang, and W.J. Synthesis: Characterization, and nonlinear optical properties of hybridized CdS–polystyrene nanocomposites. Chem. Mater. 14, 4473 (2002).

    Article  CAS  Google Scholar 

  19. M. Ilieva, D. Dimova-Malinovska, B. Ranguelov, and I. Markov: High temperature electrodeposition of CdS thin films on conductive glass substrates. J. Phys.: Condens. Matter 11, 10025 (1999).

    CAS  Google Scholar 

  20. G.H. Khorrami, A. Khorsand Zak, A. Kompany, and R. yousefi: Optical and structural properties of X-doped (X = Mn, Mg, and Zn) PZT nanoparticles by Kramers–Kronig and size strain plot methods. Ceram. Int. 38, 5683 (2012).

    Article  CAS  Google Scholar 

  21. J. Singh Optical Properties of Condensed, Matter and Applications, J. Singh, ed. (John Wiley & Sons, Ltd., Casuarina NT 0810, Australia, 2006); ISBN: 0-470-0219A.

    Chapter  Google Scholar 

  22. D.C. Neo, C. Cheng, S.D. Stranks, S.M. Fairclough, J.S. Kim, A.I. Kirkland, J.M. Smith, H.J. Snaith, H.E. Assender, and A.A. Watt: Influence of shell thickness and surface passivation on PbS/CdS core/shell colloidal quantum dot solar cells. Chem. Mater. 26, 4004 (2014).

    Article  CAS  Google Scholar 

  23. M. Molaei, F. Karimimaskon, A. Lotfiani, M. Samadpour, and H.L. Synthesis of ZnS: Ni nanocrystals (NCs) using a rapid microwave activated method and investigation of the structural and optical properties. J. Lumin. 143, 649 (2013).

    Article  CAS  Google Scholar 

  24. M. Khanzadeh, M. Dehghanipour, M. Karimipour, and M. Molaei: Improvement of nonlinear optical properties of graphene oxide in mixed with Ag2S@ZnS core–shells. Opt. Mater. 66, 664 (2017).

    Article  CAS  Google Scholar 

  25. M. Sheik-bahae, A.L.I.A. Said, and T. Wei: Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760 (1990).

    Article  CAS  Google Scholar 

  26. M.D. Zidan, A. Arfan, A. Allahham, and D. Naima: Investigation of optical nonlinearity of 8-hydroxyquinolinium 2-chloroacetate and 8-hydroxyquinolinium (Z)-3-carboxylate salts by Z-scan technique. Opt. Laser Technol. 76, 85 (2016).

    Article  CAS  Google Scholar 

  27. M.D. Zidan, M.M. Al-Ktaifani, and A. Allahham: Nonlinear optical absorption investigations of the novel organic-inorganic hybrid salt: Bis[1,1′-methylenedipyridinium] hexacyanidoferrate(II) octahydrate by Z-scan technique. Optik 126, 1494 (2015).

    Article  Google Scholar 

  28. T. Thilak, M. BasheerAhamed, and G. Vinitha: Third order nonlinear optical properties of polycrystalline octithiophene thin films studied by electro absorption spectroscopy. Optik 124, 4716 (2013).

    Article  CAS  Google Scholar 

  29. H. Motiei, A. Jafari, and R. Naderali: Third-order nonlinear optical properties of organic azo dyes by using strength of nonlinearity parameter and Z-scan technique. Opt. Laser Technol. 88, 68 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Iran National Science Foundation (INSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Molaei.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molaei, M., Karimipour, M., Abbasi, S. et al. PbS and PbS/CdS quantum dots: Synthesized by photochemical approach, structural, linear and nonlinear response properties, and optical limiting. Journal of Materials Research 35, 401–409 (2020). https://doi.org/10.1557/jmr.2020.17

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.17

Navigation