Skip to main content
Log in

In situ low-temperature hydrothermal synthesis of LiMn2O4 nanocomposites based on graphene oxide/carbon nanotubes hydrogel and its capacities

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

A Corrigendum to this article was published on 23 February 2021

Abstract

Integrating LiMn2O4(LMO) and different carbon materials to build a mixed cathode system can provide fast transport channels to improve the conduction of both electrons and ions. In this paper, our work studied in situ low-temperature hydrothermal synthesis of LMO nanocomposites based on graphene oxide (GO)/carbon nanotubes (CNTs) hydrogel. Compared with the pure LMO nanoparticles, GO/CNTs/LMO (GCLMO) composites greatly improved electrochemical performance in specific capacity, cycle performance and rate ability. The electrochemical test results showed that the specific capacitance of GCLMO nanocomposites reached 396 F/g at the current density of 0.5 A/g, which was much higher than 221 F/g of pure LMO. Even at the current density of 10 A/g, the specific capacitance was still as high as 309 F/g. Besides, after 2000 cycles, the specific capacitance retention of the composite was 93%. Electrochemical data showed that GCLMO composite is an ideal cathode material for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:

Similar content being viewed by others

References

  1. M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.L. Taberna, C.P. Grey, B. Dunn, and P. Simon: Efficient storage mechanisms for building better supercapacitors. Nat. Energy. 1(32), 651–652 (2016).

    Google Scholar 

  2. B. Li, F. Dai, Q. Xiao, L. Yang, J. Shen, C. Zhang, and M. Cai: Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ. Sci. 9(1), 102–106 (2016).

    Article  CAS  Google Scholar 

  3. H. Yue, X. Huang, D. Lv, and Y. Yang: Hydrothermal synthesis of LiMn2O4/C composite as a cathode for rechargeable lithium-ion battery with excellent rate capability. Electrochim. Acta 54(23), 5363–5367 (2009).

    Article  CAS  Google Scholar 

  4. K.-S. Chen, R. Xu, N.S. Luu, E.B. Secor, K. Hamamoto, Q. Li, S. Kim, V.K. Sangwan, I. Balla, L.M. Guiney, J.-W.T. Seo, X. Yu, W. Liu, J. Wu, C. Wolverton, V.P. Dravid, S.A. Barnett, J. Lu, K. Amine, and M.C. Hersam: Comprehensive enhancement of nanostructured lithium-ion battery cathode materials via conformal graphene dispersion. Nano Lett. 17(4), 2539–2546 (2017).

    Article  CAS  Google Scholar 

  5. Q. Xia, S. Sun, J. Xu, F. Zan, J. Yue, Q. Zhang, L. Gu, and H. Xia: Self-standing 3D cathodes for all-solid-state thin film lithium batteries with improved interface kinetics. Small 14(52), e1804149 (2018).

    Article  Google Scholar 

  6. H. Xia, Q. Xia, B. Lin, J. Zhu, J.K. Seo, and Y.S. Meng: Self-standing porous LiMn2O4 nanowall arrays as promising cathodes for advanced 3D microbatteries and flexible lithium-ion batteries. Nano Energy 22, 475–482 (2016).

    Article  CAS  Google Scholar 

  7. T. Friedrich, B. Tieke, F.J. Stadler, C. Bailly, T. Eckert, and W. Richtering: Thermoresponsive copolymer hydrogels on the basis of N-Isopropylacrylamide and a non-ionic surfactant monomer: Swelling behavior, transparency and rheological properties. Macromol. 43(23), 9964–9971 (2010).

    Article  CAS  Google Scholar 

  8. F.J. Stadler, T. Friedrich, K. Kraus, B. Tieke, and C. Bailly: Elongational rheology of NIPAM-based hydrogels. Rheol. Acta 52(5), 413–423 (2013).

    Article  CAS  Google Scholar 

  9. Q. Saleem, B. Liu, C.C. Gradinaru, and P.M. Macdonald: Lipogels: Single-lipid-bilayer-enclosed hydrogel spheres. Biomacromolecules 12(6), 2364–2374 (2011).

    Article  CAS  Google Scholar 

  10. T.-K. Hong, D.W. Lee, H.J. Choi, H.S. Shin, and B.-S. Kim: Transparent, flexible conducting hybrid multi layer thin films of multiwalled carbon nanotubes with graphene nanosheets. Acs Nano 4(7), 3861–3868 (2010).

    Article  CAS  Google Scholar 

  11. A. GhavamiNejad, S. Hashmi, H.-I. Joh, S. Lee, Y.-S. Lee, M. Vatankhah-Varnoosfaderani, and F.J. Stadler: Network formation in graphene oxide composites with surface grafted PNIPAM chains in aqueous solution characterized by rheological experiments. Phys. Chem. Chem. Phys. 16(18), 8675–8685 (2014).

    Article  CAS  Google Scholar 

  12. J. Qi, W. Lv, G. Zhang, F. Zhang, and X. Fan: Poly(N-isopropylacrylamide) on two-dimensional graphene oxide surfaces. Polym. Chem. 3(3), 621–624 (2012).

    Article  CAS  Google Scholar 

  13. Z. Sui, Q. Meng, X. Zhang, R. Ma, and B. Cao: Green synthesis of carbon nanotube-graphene hybrid aerogels and their use as versatile agents for water purification. J. Mater. Chem. 22(18), 8767–8771 (2012).

    Article  CAS  Google Scholar 

  14. G.G. Kumar, S. Hashmi, C. Karthikeyan, A. GhavamiNejad, M. Vatankhah-Varnoosfaderani, and F.J. Stadler: Graphene oxide/carbon nanotube composite hydrogels-versatile materials for microbial fuel cell applications. Macromol. Rapid Commun. 35(21), 1861–1865 (2014).

    Article  CAS  Google Scholar 

  15. H. Xia, K.R. Ragavendran, J. Xie, and L. Lu: Ultrafine LiMn2O4/carbon nanotube nanocomposite with excellent rate capability and cycling stability for lithium-ion batteries. J. Power Sources 212, 28–34 (2012).

    Article  CAS  Google Scholar 

  16. X. Jia, C. Yan, Z. Chen, R. Wang, Q. Zhang, L. Guo, F. Wei, and Y. Lu: Direct growth of flexible LiMn2O4/CNT lithium-ion cathodes. Chem. Commun. 47(34), 9669–9671 (2011).

    Article  CAS  Google Scholar 

  17. E. Yoo, J. Kim, E. Hosono, H.-s. Zhou, T. Kudo, and I. Honma: Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8(8), 2277–2282 (2008).

    Article  CAS  Google Scholar 

  18. V.C. Tung, L.-M. Chen, M.J. Allen, J.K. Wassei, K. Nelson, R.B. Kaner, and Y. Yang: Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett. 9(5), 1949–1955 (2009).

    Article  CAS  Google Scholar 

  19. J. Biener, M. Stadermann, M. Suss, M.A. Worsley, M.M. Biener, K.A. Rose, and T.F. Baumann: Advanced carbon aerogels for energy applications. Energy Environ. Sci. 4(3), 656–667 (2011).

    Article  CAS  Google Scholar 

  20. W. Chen and L. Yan: In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale 3(8), 3132–3137 (2011).

    Article  CAS  Google Scholar 

  21. L. Chen, D. Li, X. Zheng, L. Chen, Y. Zhang, Z. Liang, J. Feng, P. Si, J. Lou, and L. Ci: Integrated nanocomposite of LiMn2O4/graphene/carbon nanotubes with pseudocapacitive properties as superior cathode for aqueous hybrid capacitors. J, Electroanal. Chem. 842, 74–81 (2019).

    Article  CAS  Google Scholar 

  22. X. Meng, L. Lu, and C. Sun: Green synthesis of three-dimensional MnO2/graphene hydrogel composites as a high-performance electrode material for supercapacitors. ACS Appl. Mater. Interfaces 10(19), 16474–16481 (2018).

    Article  CAS  Google Scholar 

  23. X. Zhu, T.K.A. Hoang, G. Tan, X. Jia, R. Tao, F. Wu, and P. Chen: Tuning microstructures of graphene to improve power capability of rechargeable hybrid aqueous batteries. ACS Appl. Mater. Interfaces 10(43), 37110–37118 (2018).

    Article  CAS  Google Scholar 

  24. Y. Hou, K. Chang, H. Tang, B. Li, Y. Hou, and Z. Chang: Drastic enhancement in the rate and cyclic behavior of LiMn2O4 electrodes at elevated temperatures by phosphorus doping. Electrochim. Acta 319, 587–595 (2019).

    Article  CAS  Google Scholar 

  25. S. Cotte, B. Pecquenard, F. Le Cras, R. Grissa, H. Martinez, and L. Bourgeois: Lithium-rich manganese oxide spinel thin films as 3 V electrode for lithium batteries. Electrochim. Acta 180, 528–534 (2015).

    Article  CAS  Google Scholar 

  26. F. Cheng, H. Wang, Z. Zhu, Y. Wang, T. Zhang, Z. Tao, and J. Chen: Porous LiMn2O4 nanorods with durable high-rate capability for rechargeable Li-ion batteries. Energy Environ. Sci. 4(9), 3668–3675 (2011).

    Article  CAS  Google Scholar 

  27. N. Kumar, K.G. Prasad, T. Maiyalagan, and A. Sen: Precise control of morphology of ultrafine LiMn2O4 nanorods as a supercapacitor electrode via a two-step hydrothermal method. Crystengcomm 20(38), 5707–5717 (2018).

    Article  CAS  Google Scholar 

  28. C. Mu, S. Lou, R. Ali, H. Xiong, S. Liu, H. Wang, W. Huo, L. Yin, R. Jia, Y. Liu, and X. Jian: Carbon-decorated LiMn2O4 nanorods with enhanced performance for supercapacitors. J. Alloys Compd 805, 624–630 (2019).

    Article  CAS  Google Scholar 

  29. H. Zhao, F. Li, X. Liu, W. Xiong, B. Chen, H. Shao, D. Que, Z. Zhang, and Y. Wu: A simple, low-cost and eco-friendly approach to synthesize single-crystalline LiMn2O4 nanorods with high electrochemical performance for lithium-ion batteries. Electrochim. Acta 166, 124–133 (2015).

    Article  CAS  Google Scholar 

  30. L. Xiong, Y. Xu, T. Tao, and J.B. Goodenough: Synthesis and electrochemical characterization of multi-cations doped spinel LiMn2O4 used for lithium ion batteries. J. Power Sources 199, 214–219 (2012).

    Article  CAS  Google Scholar 

  31. H. Zhao, Y. Nie, Y. Li, T. Wu, E. Zhao, J. Song, and S. Komarneni: Low-cost and eco-friendly synthesis of octahedral LiMn2O4 cathode material with excellent electrochemical performance. Ceram. Int. 45(14), 17183–17191 (2019).

    Article  CAS  Google Scholar 

  32. C. Chen, C. Yu, X.W. Fu, and Z.B. Wang: Synthesis of graphite oxide-wrapped CuO nanocomposites for electrocatalytic oxidation of glucose. Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 44(10), 1521–1525 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Anhui Province Key Research and Development Plan (JZ2018AKKG0332).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guanping Jin or Chunnian Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Hua, L., Wang, Z. et al. In situ low-temperature hydrothermal synthesis of LiMn2O4 nanocomposites based on graphene oxide/carbon nanotubes hydrogel and its capacities. Journal of Materials Research 35, 2516–2527 (2020). https://doi.org/10.1557/jmr.2020.179

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.179

Navigation