Abstract
Integrating LiMn2O4(LMO) and different carbon materials to build a mixed cathode system can provide fast transport channels to improve the conduction of both electrons and ions. In this paper, our work studied in situ low-temperature hydrothermal synthesis of LMO nanocomposites based on graphene oxide (GO)/carbon nanotubes (CNTs) hydrogel. Compared with the pure LMO nanoparticles, GO/CNTs/LMO (GCLMO) composites greatly improved electrochemical performance in specific capacity, cycle performance and rate ability. The electrochemical test results showed that the specific capacitance of GCLMO nanocomposites reached 396 F/g at the current density of 0.5 A/g, which was much higher than 221 F/g of pure LMO. Even at the current density of 10 A/g, the specific capacitance was still as high as 309 F/g. Besides, after 2000 cycles, the specific capacitance retention of the composite was 93%. Electrochemical data showed that GCLMO composite is an ideal cathode material for supercapacitors.
Similar content being viewed by others
References
M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.L. Taberna, C.P. Grey, B. Dunn, and P. Simon: Efficient storage mechanisms for building better supercapacitors. Nat. Energy. 1(32), 651–652 (2016).
B. Li, F. Dai, Q. Xiao, L. Yang, J. Shen, C. Zhang, and M. Cai: Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ. Sci. 9(1), 102–106 (2016).
H. Yue, X. Huang, D. Lv, and Y. Yang: Hydrothermal synthesis of LiMn2O4/C composite as a cathode for rechargeable lithium-ion battery with excellent rate capability. Electrochim. Acta 54(23), 5363–5367 (2009).
K.-S. Chen, R. Xu, N.S. Luu, E.B. Secor, K. Hamamoto, Q. Li, S. Kim, V.K. Sangwan, I. Balla, L.M. Guiney, J.-W.T. Seo, X. Yu, W. Liu, J. Wu, C. Wolverton, V.P. Dravid, S.A. Barnett, J. Lu, K. Amine, and M.C. Hersam: Comprehensive enhancement of nanostructured lithium-ion battery cathode materials via conformal graphene dispersion. Nano Lett. 17(4), 2539–2546 (2017).
Q. Xia, S. Sun, J. Xu, F. Zan, J. Yue, Q. Zhang, L. Gu, and H. Xia: Self-standing 3D cathodes for all-solid-state thin film lithium batteries with improved interface kinetics. Small 14(52), e1804149 (2018).
H. Xia, Q. Xia, B. Lin, J. Zhu, J.K. Seo, and Y.S. Meng: Self-standing porous LiMn2O4 nanowall arrays as promising cathodes for advanced 3D microbatteries and flexible lithium-ion batteries. Nano Energy 22, 475–482 (2016).
T. Friedrich, B. Tieke, F.J. Stadler, C. Bailly, T. Eckert, and W. Richtering: Thermoresponsive copolymer hydrogels on the basis of N-Isopropylacrylamide and a non-ionic surfactant monomer: Swelling behavior, transparency and rheological properties. Macromol. 43(23), 9964–9971 (2010).
F.J. Stadler, T. Friedrich, K. Kraus, B. Tieke, and C. Bailly: Elongational rheology of NIPAM-based hydrogels. Rheol. Acta 52(5), 413–423 (2013).
Q. Saleem, B. Liu, C.C. Gradinaru, and P.M. Macdonald: Lipogels: Single-lipid-bilayer-enclosed hydrogel spheres. Biomacromolecules 12(6), 2364–2374 (2011).
T.-K. Hong, D.W. Lee, H.J. Choi, H.S. Shin, and B.-S. Kim: Transparent, flexible conducting hybrid multi layer thin films of multiwalled carbon nanotubes with graphene nanosheets. Acs Nano 4(7), 3861–3868 (2010).
A. GhavamiNejad, S. Hashmi, H.-I. Joh, S. Lee, Y.-S. Lee, M. Vatankhah-Varnoosfaderani, and F.J. Stadler: Network formation in graphene oxide composites with surface grafted PNIPAM chains in aqueous solution characterized by rheological experiments. Phys. Chem. Chem. Phys. 16(18), 8675–8685 (2014).
J. Qi, W. Lv, G. Zhang, F. Zhang, and X. Fan: Poly(N-isopropylacrylamide) on two-dimensional graphene oxide surfaces. Polym. Chem. 3(3), 621–624 (2012).
Z. Sui, Q. Meng, X. Zhang, R. Ma, and B. Cao: Green synthesis of carbon nanotube-graphene hybrid aerogels and their use as versatile agents for water purification. J. Mater. Chem. 22(18), 8767–8771 (2012).
G.G. Kumar, S. Hashmi, C. Karthikeyan, A. GhavamiNejad, M. Vatankhah-Varnoosfaderani, and F.J. Stadler: Graphene oxide/carbon nanotube composite hydrogels-versatile materials for microbial fuel cell applications. Macromol. Rapid Commun. 35(21), 1861–1865 (2014).
H. Xia, K.R. Ragavendran, J. Xie, and L. Lu: Ultrafine LiMn2O4/carbon nanotube nanocomposite with excellent rate capability and cycling stability for lithium-ion batteries. J. Power Sources 212, 28–34 (2012).
X. Jia, C. Yan, Z. Chen, R. Wang, Q. Zhang, L. Guo, F. Wei, and Y. Lu: Direct growth of flexible LiMn2O4/CNT lithium-ion cathodes. Chem. Commun. 47(34), 9669–9671 (2011).
E. Yoo, J. Kim, E. Hosono, H.-s. Zhou, T. Kudo, and I. Honma: Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8(8), 2277–2282 (2008).
V.C. Tung, L.-M. Chen, M.J. Allen, J.K. Wassei, K. Nelson, R.B. Kaner, and Y. Yang: Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett. 9(5), 1949–1955 (2009).
J. Biener, M. Stadermann, M. Suss, M.A. Worsley, M.M. Biener, K.A. Rose, and T.F. Baumann: Advanced carbon aerogels for energy applications. Energy Environ. Sci. 4(3), 656–667 (2011).
W. Chen and L. Yan: In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale 3(8), 3132–3137 (2011).
L. Chen, D. Li, X. Zheng, L. Chen, Y. Zhang, Z. Liang, J. Feng, P. Si, J. Lou, and L. Ci: Integrated nanocomposite of LiMn2O4/graphene/carbon nanotubes with pseudocapacitive properties as superior cathode for aqueous hybrid capacitors. J, Electroanal. Chem. 842, 74–81 (2019).
X. Meng, L. Lu, and C. Sun: Green synthesis of three-dimensional MnO2/graphene hydrogel composites as a high-performance electrode material for supercapacitors. ACS Appl. Mater. Interfaces 10(19), 16474–16481 (2018).
X. Zhu, T.K.A. Hoang, G. Tan, X. Jia, R. Tao, F. Wu, and P. Chen: Tuning microstructures of graphene to improve power capability of rechargeable hybrid aqueous batteries. ACS Appl. Mater. Interfaces 10(43), 37110–37118 (2018).
Y. Hou, K. Chang, H. Tang, B. Li, Y. Hou, and Z. Chang: Drastic enhancement in the rate and cyclic behavior of LiMn2O4 electrodes at elevated temperatures by phosphorus doping. Electrochim. Acta 319, 587–595 (2019).
S. Cotte, B. Pecquenard, F. Le Cras, R. Grissa, H. Martinez, and L. Bourgeois: Lithium-rich manganese oxide spinel thin films as 3 V electrode for lithium batteries. Electrochim. Acta 180, 528–534 (2015).
F. Cheng, H. Wang, Z. Zhu, Y. Wang, T. Zhang, Z. Tao, and J. Chen: Porous LiMn2O4 nanorods with durable high-rate capability for rechargeable Li-ion batteries. Energy Environ. Sci. 4(9), 3668–3675 (2011).
N. Kumar, K.G. Prasad, T. Maiyalagan, and A. Sen: Precise control of morphology of ultrafine LiMn2O4 nanorods as a supercapacitor electrode via a two-step hydrothermal method. Crystengcomm 20(38), 5707–5717 (2018).
C. Mu, S. Lou, R. Ali, H. Xiong, S. Liu, H. Wang, W. Huo, L. Yin, R. Jia, Y. Liu, and X. Jian: Carbon-decorated LiMn2O4 nanorods with enhanced performance for supercapacitors. J. Alloys Compd 805, 624–630 (2019).
H. Zhao, F. Li, X. Liu, W. Xiong, B. Chen, H. Shao, D. Que, Z. Zhang, and Y. Wu: A simple, low-cost and eco-friendly approach to synthesize single-crystalline LiMn2O4 nanorods with high electrochemical performance for lithium-ion batteries. Electrochim. Acta 166, 124–133 (2015).
L. Xiong, Y. Xu, T. Tao, and J.B. Goodenough: Synthesis and electrochemical characterization of multi-cations doped spinel LiMn2O4 used for lithium ion batteries. J. Power Sources 199, 214–219 (2012).
H. Zhao, Y. Nie, Y. Li, T. Wu, E. Zhao, J. Song, and S. Komarneni: Low-cost and eco-friendly synthesis of octahedral LiMn2O4 cathode material with excellent electrochemical performance. Ceram. Int. 45(14), 17183–17191 (2019).
C. Chen, C. Yu, X.W. Fu, and Z.B. Wang: Synthesis of graphite oxide-wrapped CuO nanocomposites for electrocatalytic oxidation of glucose. Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 44(10), 1521–1525 (2014).
Acknowledgments
This work was financially supported by Anhui Province Key Research and Development Plan (JZ2018AKKG0332).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Wang, K., Hua, L., Wang, Z. et al. In situ low-temperature hydrothermal synthesis of LiMn2O4 nanocomposites based on graphene oxide/carbon nanotubes hydrogel and its capacities. Journal of Materials Research 35, 2516–2527 (2020). https://doi.org/10.1557/jmr.2020.179
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2020.179