Skip to main content
Log in

The thermophysical properties and defect chemistry of HfO2–Sm3TaO7 ceramics

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

HfO2–Sm3TaO7 ceramics are prepared through a solid-state reaction method. The X-ray diffraction and structural refinement show that the phase structures of HfO2–Sm3TaO7 ceramics are an ordered orthorhombic phase and the space groups are belonging to Ccmm. The degree of the structural disorder increases with increasing HfO2 content. The solid solution mechanism reveals that Hf4+ exists in the form of interstitial ions that cause crystal expansion when the doping content is less than 4 mol%. When the doping concentration of HfO2 ≥ 4 mol%, the Hf4+ ions can substitute an equal number of Sm3+ and Ta5+ ions. The phase transition of Sm3TaO7 ceramics is removed with increasing HfO2 content, and the 8 mol% HfO2–Sm3TaO7 ceramics have a high thermal expansion coefficient of 10.2 × 10−6 K−1 at 1200 °C. The 2 mol% HfO2–Sm3TaO7 ceramics have the lowest thermal conductivity (1.03 W/m K at 900 °C), which is lower than previous research of the 7–8 YSZ. The outstanding thermophysical properties of HfO2–Sm3TaO7 ceramics indicate that they are potential thermal-barrier coating materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Table 1
Figure 3
Table 2
Figure 4
Table 3
Figure 5
Figure 6

Similar content being viewed by others

References

  1. M.N. Rahaman, J.R. Gross, R.E. Dutton, and H. Wang: Phase stability, sintering, and thermal conductivity of plasma-sprayed ZrO2-Gd2O3 compositions for potential thermal barrier coating applications. Acta Mater. 54, 1615 (2006).

    Article  CAS  Google Scholar 

  2. J. Feng, B. Xiao, R. Zhou, and W. Pan: Thermal conductivity of rare earth zirconate pyrochlore from first principles. Scr. Mater. 68, 727 (2013).

    Article  CAS  Google Scholar 

  3. R. Vassen, X.Q. Cao, F. Tietz, and D. Basu: Zirconates as new materials for thermal barrier coatings. ChemInform 83, 2023 (2000).

    CAS  Google Scholar 

  4. X.Q. Cao, R. Vassen, and D. Stoever: Ceramic materials for thermal barrier coatings. J. Eur. Ceram. Soc. 24, 1 (2004).

    Article  CAS  Google Scholar 

  5. M.J. Maloney: Thermal barrier coating systems and materials. U.S. Patent No. 6,284,2001.

  6. Z.X. Qu, C.L. Wan, and W. Pan: Thermophysical properties of rare-earth stannates: effect of the pyrochlore structure. Acta Mater. 60, 2939 (2012).

    Article  CAS  Google Scholar 

  7. R. Abe, M. Higashi, Z.G. Zou, K. Sayama, Y. Abe, and H. Arakawa: Photocatalytic water splitting into H2 and O2 over R3TaO7 and R3NbO7 (R = Y, Yb, Gd, La): Effect of crystal structure on photocatalytic activity. J. Phys. Chem. B 108, 811 (2004).

    Article  CAS  Google Scholar 

  8. L. Cai and J.C. Nino: Structure and dielectric properties of Ln3NbO7 (Ln = Nd, Gd, Dy, Er, Yb and Y). J. Eur. Ceram. Soc. 27, 3971 (2007).

    Article  Google Scholar 

  9. M. Wakeshima and Y. Hinatsu: Magnetic properties and structural transitions of orthorhombic fluorite-related compounds Ln3MO7 (Ln = rare earths, M = transition metals). J. Solid State Chem. 183, 2681 (2010).

    Article  Google Scholar 

  10. K.P.F. Siqueira, J.C. Soares, E. Granado, E.M. Bittar, A.M. Paula, R.L. Moreira, and A. Dias: Synchrotron X-ray diffraction and Raman spectroscopy of Ln3NbO7 (Ln = La, Pr, Nd, Sm-Lu) ceramics obtained by molten-salt synthesis. J. Solid State Chem. 209, 6368 (2014).

    Article  Google Scholar 

  11. C.L. Wan, Z.X. Qu, Y. He, D. Luan, and W. Pan: Ultralow thermal conductivity in highly anion-defective aluminates. Phys. Rev. Lett. 101, 085901 (2008).

    Article  Google Scholar 

  12. C.L. Wan, W. Pan, Q. Xu, Y.X. Qin, J.D. Wang, Z.X. Qu, and M.H. Fang: Effect of point defects on the thermal transport properties of (LaxGd1-x)2Zr2O7: Experiment and theoretical model. Phys. Rev. B 74, 144109 (2006).

    Article  Google Scholar 

  13. M. Zhao, W. Pan, C.L. Wan, Z.X. Qu, Z. Li, and J. Yan: Defect engineering in development of low thermal conductivity materials: A review. J. Eur. Ceram. Soc. 37, 1 (2017).

    Article  Google Scholar 

  14. L. Chen, P. Wu, P. Song, and J. Feng: Potential thermal barrier coating materials: RE3NbO7 (RE = La, Nd, Sm, Eu, Gd, Dy) ceramics. J. Am. Ceram. Soc. 101, 4503 (2018).

    Article  CAS  Google Scholar 

  15. K.W. Schlichting, N.P. Padture, and P.G. Klemens: Thermal conductivity of dense and porous yttria-stabilized zirconia. J. Mater. Sci. 36, 3003 (2001).

    Article  CAS  Google Scholar 

  16. M. Wakeshima, H. Nishimine, and Y. Hinatsu: Crystal structure and magnetic properties of rare earth tantalates RE3TaO7 (RE = rare earths). J. Phys. Condens. Matter. 16, 4103 (2004).

    Article  CAS  Google Scholar 

  17. L. Chen and J. Feng: Research progress of thermo-mechanical properties of rare earth tantalates RE3TaO7 and RETa3O9 ceramics. Mater. China 12, 398 (2017).

    Google Scholar 

  18. A.M. Limarga, S. Shian, R.M. Leckie, C.G. Levi, and D.R. Clarke: Thermal conductivity of single- and multi-phase compositions in the ZrO2-Y2O3-Ta2O5 system. J. Eur. Ceram. Soc. 34, 3085 (2014).

    Article  CAS  Google Scholar 

  19. L. Chen, P. Song, and J. Feng: Influence of ZrO2 alloying effect on the thermophysical properties of fluorite-type Eu3TaO7 ceramics. Scr. Mater. 152, 117 (2018).

    Article  CAS  Google Scholar 

  20. L. Chen, P. Wu, and J. Feng: Optimization thermophysical properties of TiO2 alloying Sm3TaO7 ceramics as promising thermal barrier coatings. Int. J. Appl. Ceram. Technol. 16, 230 (2019).

    Article  CAS  Google Scholar 

  21. H. Zhang, H.P. Yu, X.G. Chen, Y.D. Zhao, H.B. Jiao, G. Li, and Z.J. Li: Preparation and thermophysical properties of Sm2YbTaO7 and Sm2YTaO7. Ceram. Int. 13, 14695 (2016).

    Google Scholar 

  22. J.H. Yu, H.Y. Zhao, and X.M. Zhou: Microstructure and properties of air plasma sprayed Sm2Zr2O7 coatings. J. Inorg. Mater. 7, 696 (2011).

    Article  Google Scholar 

  23. Y. Zhou, G.Y. Gan, Z.H. Ge, and J. Feng: Thermophysical properties of SmTaO4, Sm3TaO7 and SmTa3O9 ceramics. Mater. Res. Express. 7, 015204 (2020).

    Article  CAS  Google Scholar 

  24. T.L. Francis, P.P. Rao, S.K. Mahesh, T.S. Sreena, and S.P. Babu: Effect of host structure on the photoluminescence properties of Ln3TaO7: Eu3+ red phosphors. Opt. Mater. 52, 134 (2016).

    Article  Google Scholar 

  25. C. Heremans, B.J. Wuensch, J.K. Stalick, and E. Prince: Fast-ion conducting Y2(ZryTi1-y)2O7 pyrochlores: Neutron Rietveld analysis of disorder induced by Zr substitution. J. Solid State Chem. 117, 108 (1995).

    Article  CAS  Google Scholar 

  26. Z.X. Qu, C.H. Wan, and W. Pan: Thermal expansion and defect chemistry of MgO-doped Sm2Zr2O7. Chem. Mater. 19, 4913 (2007).

    Article  CAS  Google Scholar 

  27. G.S. Rohrer: Structure Bonding in Crystalline Materials (Cambridge University Press, New York, 2001).

    Book  Google Scholar 

  28. M. Zhao, X.R. Ren, J. Yan, and W. Pan: Thermo-mechanical properties of ThO2-doped Y2O3 stabilized ZrO2 for thermal barrier coatings. Ceram. Int. 42, 501 (2016).

    Article  CAS  Google Scholar 

  29. P.J. Wilde and C.R.A. Catlow: Defects and diffusion in pyrochlore structured oxides. Solid State Ion. 112, 173 (1998).

    Article  Google Scholar 

  30. M. Pirzada, R.W. Grimes, and J.F. Maguire: Incorporation of divalent ions in A2B2O7 pyrochlores. Solid State Ion. 161, 81 (2003).

    Article  CAS  Google Scholar 

  31. J. Feng, B. Xiao, R. Zhou, and W. Pan: Thermal expansion and conductivity of RE2Sn2O7 (RE = La, Nd, Sm, Gd, Er and Yb) pyrochlores. Scr. Mater. 69, 401 (2013).

    Article  CAS  Google Scholar 

  32. J. Yang, Y. Han, M. Shahid, W. Pan, M. Zhao, W. Wu, and C.L. Wan: A promising material for thermal barrier coating: pyrochlore-related compound Sm2FeTaO7. Scr. Mater. 149, 49 (2018).

    Article  CAS  Google Scholar 

  33. F.M. Pitek and C.G. Levi: Opportunities for TBCs in ZrO2-YO1.5-TaO2.5 system. Surf. Coat. Technol. 201, 6044 (2007).

    Article  Google Scholar 

Download references

Acknowledgment

This research is conducted under the support of the National Natural Science Foundation of China (Grant No. 51762028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Gan, G., Ge, Z. et al. The thermophysical properties and defect chemistry of HfO2–Sm3TaO7 ceramics. Journal of Materials Research 35, 2230–2238 (2020). https://doi.org/10.1557/jmr.2020.167

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.167

Navigation