Skip to main content

Advertisement

Log in

Electrochemical reduction of CO2 to formic acid on Bi2O2CO3/carbon fiber electrodes

  • Organic and Hybrid Functional Materials
  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Electrochemical reduction of CO2 to formic acid is a good strategy to address both environmental and energy issues. However, some drawbacks including low activity, selectivity, and stability of electrocatalysts must be overcome. We propose a method for tailoring Bi2O2CO3-coated carbon fiber electrodes with higher selectivity and stability for electrochemical CO2 reduction to formic acid. We evaluated the effect of Bi2O2CO3 and Nafion contents on the electrocatalysts performance for CO2 reduction reaction (CO2RR). All electrodes produced only HCOO in the liquid phase with a maximum faradaic efficiency (FE) of 69%. The electrocatalysts were stable under 24 h of continuous CO2RR operation. The FE increased with the increasing electrolyte concentration and cation radius size, which indicates that the anion stabilization in solution is critical for adequate formate generation. The CO2RR mechanism was proposed with basis on the literature. The structural carbonate of Bi2O2CO3 acts as an intermediate species in the formate production from CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. X. Li, J. Yu, M. Jaroniec, and X. Chen: Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 119, 3962 (2019).

    Article  CAS  Google Scholar 

  2. O.F. Lopes and H. Varela: Effect of annealing treatment on electrocatalytic properties of copper electrodes toward enhanced CO2 reduction. ChemistrySelect 3, 9046 (2018).

    Article  CAS  Google Scholar 

  3. Y. Song, J. Li, and C. Wang: Modification of porphyrin/dipyridine metal complexes on the surface of TiO2 nanotubes with enhanced photocatalytic activity for photoreduction of CO2 into methanol. J. Mater. Res. 33, 2612 (2018).

    Article  CAS  Google Scholar 

  4. Z. Feng, L. Zeng, Y. Chen, Y. Ma, C. Zhao, R. Jin, Y. Lu, Y. Wu, and Y. He: In situ preparation of Z-scheme MoO3/g-C3N4 composite with high performance in photocatalytic CO2 reduction and RhB degradation. J. Mater. Res. 32, 3660 (2017).

    Article  CAS  Google Scholar 

  5. H. Zhang, Y. Ma, F. Quan, J. Huang, F. Jia, and L. Zhang: Selective electro-reduction of CO2 to formate on nanostructured Bi from reduction of BiOCl nanosheets. Electrochem. Commun. 46, 63 (2014).

    Article  CAS  Google Scholar 

  6. D.R. Kauffman, J. Thakkar, R. Siva, C. Matranga, P.R. Ohodnicki, C. Zeng, and R. Jin: Efficient electrochemical CO2 conversion powered by renewable energy. ACS Appl. Mater. Interfaces 7, 15626 (2015).

    Article  CAS  Google Scholar 

  7. S.N. Habisreutinger, L. Schmidt-Mende, and J.K. Stolarczyk: Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem., Int. Ed. 52, 7372 (2013).

    Article  CAS  Google Scholar 

  8. H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, and J. Ye: Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 24, 229 (2012).

    Article  CAS  Google Scholar 

  9. I. Ganesh: Electrochemical conversion of carbon dioxide into renewable fuel chemicals—The role of nanomaterials and the commercialization. Renewable Sustainable Energy Rev. 59, 1269 (2016).

    Article  CAS  Google Scholar 

  10. S. Bensaid, G. Centi, E. Garrone, S. Perathoner, and G. Saracco: Towards artificial leaves for solar hydrogen and fuels from carbon dioxide. ChemSusChem 5, 500 (2012).

    Article  CAS  Google Scholar 

  11. D.G. Nocera: Solar fuels and solar chemicals industry. Acc. Chem. Res. 50, 616 (2017).

    Article  CAS  Google Scholar 

  12. N.R. De Tacconi, W. Chanmanee, B.H. Dennis, and K. Rajeshwar: Composite copper oxide-copper bromide films for the selective electroreduction of carbon dioxide. J. Mater. Res. 32, 1727 (2017).

    Article  CAS  Google Scholar 

  13. J. Chen, G. Wang, X. Wang, C. Jiang, S. Zhu, and R. Wang: Synthesis of highly dispersed Pd nanoparticles with high activity for formic acid electro-oxidation. J. Mater. Res. 28, 1553 (2013).

    Article  CAS  Google Scholar 

  14. R.J. Lim, M. Xie, M.A. Sk, J.M. Lee, A. Fisher, X. Wang, and K.H. Lim: A review on the electrochemical reduction of CO2 in fuel cells, metal electrodes and molecular catalysts. Catal. Today 233, 169 (2014).

    Article  CAS  Google Scholar 

  15. A. Del Castillo, M. Alvarez-Guerra, J. Solla-Gullón, A. Sáez, V. Montiel, and A. Irabien: Electrocatalytic reduction of CO2 to formate using particulate Sn electrodes: Effect of metal loading and particle size. Appl. Energy 157, 165 (2015).

    Article  CAS  Google Scholar 

  16. J. Yuan, X. Zhang, H. Li, K. Wang, S. Gao, Z. Yin, H. Yu, X. Zhu, Z. Xiong, and Y. Xie: TiO2/SnO2 double-shelled hollow spheres-highly efficient photocatalyst for the degradation of rhodamine B. Catal. Commun. 60, 129 (2014).

    Article  CAS  Google Scholar 

  17. X. Yu and P.G. Pickup: Recent advances in direct formic acid fuel cells (DFAFC). J. Power Sources 182, 124 (2008).

    Article  CAS  Google Scholar 

  18. Y. Hori: Electrochemical CO2 Reduction on Metal Electrodes (Springer, New York, NY 2008).

    Book  Google Scholar 

  19. Y. Hori and S. Suzuki: Electrolytic reduction of carbon dioxide at mercury electrode in aquous solution. Bull. Chem. Soc. Jpn. 55, 660 (1982).

    Article  CAS  Google Scholar 

  20. W. Lv, R. Zhang, P. Gao, and L. Lei: Studies on the faradaic efficiency for electrochemical reduction of carbon dioxide to formate on tin electrode. J. Power Sources 253, 276 (2014).

    Article  CAS  Google Scholar 

  21. M.F. Baruch, J.E. Pander, J.L. White, and A.B. Bocarsly: Mechanistic insights into the reduction of CO2 on tin electrodes using in situ ATR-IR spectroscopy. ACS Catal. 5, 3148 (2015).

    Article  CAS  Google Scholar 

  22. J.E. Pander, M.F. Baruch, and A.B. Bocarsly: Probing the mechanism of aqueous CO2 reduction on post-transition-metal electrodes using ATR-IR spectroelectrochemistry. ACS Catal. 6, 7824 (2016).

    Article  CAS  Google Scholar 

  23. Z. Zhang, M. Chi, G.M. Veith, P. Zhang, D.A. Lutterman, J. Rosenthal, S.H. Overbury, S. Dai, and H. Zhu: Rational design of Bi nanoparticles for efficient electrochemical CO2 reduction: The elucidation of size and surface condition effects. ACS Catal. 6, 6255 (2016).

    Article  CAS  Google Scholar 

  24. H. Zhong, Y. Qiu, T. Zhang, X. Li, H. Zhang, and X. Chen: Bismuth nanodendrites as a high performance electrocatalyst for selective conversion of CO2 to formate. J. Mater. Chem. A 4, 13746 (2016).

    Article  CAS  Google Scholar 

  25. W. Lv, J. Bei, R. Zhang, W. Wang, F. Kong, L. Wang, and W. Wang: Bi2O2CO3 nanosheets as electrocatalysts for selective reduction of CO2 to formate at low overpotential. ACS Omega 2, 2561 (2017).

    Article  CAS  Google Scholar 

  26. O.F. Lopes, K.T.G. Carvalho, W. Avansi, D.M.B. Milori, and C. Ribeiro: Insights into the photocatalytic performance of Bi2O2CO3/BiVO4 heterostructures prepared by one-step hydrothermal method. RSC Adv. 8, 10889 (2018).

    Article  CAS  Google Scholar 

  27. Z.M. Detweiler, J.L. White, S.L. Bernasek, and A.B. Bocarsly: Anodized indium metal electrodes for enhanced carbon dioxide reduction in aqueous electrolyte. Langmuir 30, 7593 (2014).

    Article  CAS  Google Scholar 

  28. E. Zhang, T. Wang, K. Yu, J. Liu, W. Chen, A. Li, H. Rong, R. Lin, S. Ji, X. Zheng, Y. Wang, L. Zheng, C. Chen, D. Wang, J. Zhang, and Y. Li: Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 141, 16569 (2019).

    Article  CAS  Google Scholar 

  29. P. Su, W. Xu, Y. Qiu, T. Zhang, X. Li, and H. Zhang: Ultrathin bismuth nanosheets as a highly efficient CO2 reduction electrocatalyst. ChemSusChem 11, 848 (2018).

    Article  CAS  Google Scholar 

  30. O.F. Lopes, K.T.G. Carvalho, A.E. Nogueira, W. Avansi, and C. Ribeiro: Controlled synthesis of BiVO4 photocatalysts: Evidence of the role of heterojunctions in their catalytic performance driven by visible-light. Appl. Catal., B 188, 87 (2016).

    Article  CAS  Google Scholar 

  31. O.F. Lopes, K.T.G. Carvalho, W. Avansi, and C. Ribeiro: Growth of BiVO4 nanoparticles on a Bi2O3 surface: Effect of heterojunction formation on visible irradiation-driven catalytic performance. J. Phys. Chem. C 121, 13747 (2017).

    Article  CAS  Google Scholar 

  32. J.M. Sieben, M.M.E. Duarte, and C.E. Mayer: Electro-oxidation of methanol on Pt–Ru nanostructured catalysts electrodeposited onto electroactivated carbon fiber materials. ChemCatChem 2, 182 (2010).

    Article  CAS  Google Scholar 

  33. C. Kim, H.S. Jeon, T. Eom, M.S. Jee, H. Kim, C.M. Friend, B.K. Min, and Y.J. Hwang: Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles. J. Am. Chem. Soc. 137, 13844 (2015).

    Article  CAS  Google Scholar 

  34. E.V. Spinacé, A.O. Neto, E.G. Franco, M. Linardi, and E.R. Gonzalez: Métodos de preparação de nanopartículas metálicas suportadas em carbono de alta área superficial, como eletrocatalisadores em células a combustível com membrana trocadora de prótons. Quim. Nova 27, 648 (2004).

    Article  Google Scholar 

  35. K. Meduri, C. Stauffer, W. Qian, O. Zietz, A. Barnum, G.O.B. Johnson, D. Fan, W. Ji, C. Zhang, P. Tratnyek, and J. Jiao: Palladium and gold nanoparticles on carbon supports as highly efficient catalysts for effective removal of trichloroethylene. J. Mater. Res. 33, 2404 (2018).

    Article  CAS  Google Scholar 

  36. H. Duan, Y. Li, X. Lv, D. Chen, M. Long, and L. Wen: CuO–ZnO anchored on APS modified activated carbon as an enhanced catalyst for methanol synthesis—The role of ZnO. J. Mater. Res. 33, 1625 (2018).

    Article  CAS  Google Scholar 

  37. Y. Liu, Q. Huang, G. Jiang, D. Liu, and W. Yu: Cu2O nanoparticles supported on carbon nanofibers as a cost-effective and efficient catalyst for RhB and phenol degradation. J. Mater. Res. 32, 3605 (2017).

    Article  CAS  Google Scholar 

  38. C. Pak, S. Kang, Y. Suk Choi, and H. Change: Nanomaterials and structures for the fourth innovation of polymer electrolyte fuel cell. J. Mater. Res. 25, 2063 (2010).

    Article  CAS  Google Scholar 

  39. Y-C. Hsieh, S.D. Senanayake, Y. Zhang, W. Xu, and D.E. Polyansky: Effect of chloride anions on the synthesis and enhanced catalytic activity of silver nanocoral electrodes for CO2 electroreduction. ACS Catal. 5, 5349 (2015).

    Article  CAS  Google Scholar 

  40. E. Antolini: Carbon supports for low-temperature fuel cell catalysts. Appl. Catal., B 88, 1 (2009).

    Article  CAS  Google Scholar 

  41. E. Antolini: Formation of carbon-supported PtM alloys for low temperature fuel cells: A review. Mater. Chem. Phys. 78, 563 (2003).

    Article  CAS  Google Scholar 

  42. Z. Lin, L. Ji, O. Toprakci, W. Krause, and X. Zhang: Electrospun carbon nanofiber-supported Pt–Pd alloy composites for oxygen reduction. J. Mater. Res. 25, 1329 (2010).

    Article  CAS  Google Scholar 

  43. A. Wuttig and Y. Surendranath: Impurity ion complexation enhances carbon dioxide reduction catalysis. ACS Catal. 5, 4479 (2015).

    Article  CAS  Google Scholar 

  44. M. Bevilacqua, J. Filippi, M. Folliero, A. Lavacchi, H.A. Miller, A. Marchionni, and F. Vizza: Enhancement of the efficiency and selectivity for carbon dioxide electroreduction to fuels on tailored copper catalyst architectures. Energy Technol. 4, 1020 (2016).

    Article  CAS  Google Scholar 

  45. S.M. Pawar, B.S. Pawar, B. Hou, J. Kim, A.T. Aqueel Ahmed, H.S. Chavan, Y. Jo, S. Cho, A.I. Inamdar, J.L. Gunjakar, H. Kim, S. Cha, and H. Im: Self-assembled two-dimensional copper oxide nanosheet bundles as an efficient oxygen evolution reaction (OER) electrocatalyst for water splitting applications. J. Mater. Chem. A 5, 12747 (2017).

    Article  CAS  Google Scholar 

  46. Z.A. Alothman: A review: Fundamental aspects of silicate mesoporous materials. Materials 5, 2874 (2012).

    Article  CAS  Google Scholar 

  47. M.D. Salazar-Villalpando: Effect of electrolyte on the electrochemical reduction of CO2 maria. ECS Trans. 33, 77 (2011).

    Article  CAS  Google Scholar 

  48. J. Resasco, Y. Lum, E. Clark, J.Z. Zeledon, and A.T. Bell: Effects of anion identity and concentration on electrochemical reduction of CO2. ChemElectroChem 5, 1064 (2018).

    Article  CAS  Google Scholar 

  49. D. Ren, Y. Deng, A.D. Handoko, C.S. Chen, S. Malkhandi, and B.S. Yeo: Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal. 5, 2814 (2015).

    Article  CAS  Google Scholar 

  50. J. Qiao, Y. Liu, F. Hong, and J. Zhang: A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43, 631 (2014).

    Article  CAS  Google Scholar 

  51. M.D. Salazar-villalpando: Effect of electrolyte on the electrochemical reduction of CO2. ECS Trans. 33, 77 (2011).

    Article  CAS  Google Scholar 

  52. M.R. Thorson, K.I. Siil, and P.J.A. Kenis: Effect of cations on the electrochemical conversion of CO2 to CO. J. Electrochem. Soc. 160, F69 (2013).

    Article  CAS  Google Scholar 

  53. S. Lee, J.D. Ocon, Y. Il Son, and J. Lee: Alkaline CO2 electrolysis toward selective and continuous HCOO–production over SnO2 nanocatalysts. J. Phys. Chem. C 119, 4884 (2015).

    Article  CAS  Google Scholar 

  54. B. Kumar, V. Atla, J.P. Brian, S. Kumari, T.Q. Nguyen, M. Sunkara, and J.M. Spurgeon: Reduced SnO2 porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO2-into-HCOOH conversion. Angew. Chem., Int. Ed. 56, 3645 (2017).

    Article  CAS  Google Scholar 

  55. A. Del Castillo, M. Alvarez-Guerra, J. Solla-Gullón, A. Sáez, V. Montiel, and A. Irabien: Sn nanoparticles on gas diffusion electrodes: Synthesis, characterization and use for continuous CO2 electroreduction to formate. J. CO2 Util. 18, 222 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge FAPESP (São Paulo Research Foundation) for the scholarships (Grant Nos. 17/09713-0, 16/09746-3, and 17/00433-5) and financial support (Grant Nos. 13/16930-7 and 18/01258-5), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for the financial support (Grant Nos. 304458/2013-9, 407497/2018-8, and 458763/2014-4), CAPES (Coordination for the Improvement of Higher Education Personne—Finance Code 001; and CAPES/Embrapa Call 15/2014 Grant No. 166); and Agronano Network (Embrapa Research Network). Caue Ribeiro also acknowledges Alexander von Humboldt Foundation and CAPES by Experienced Research Fellowship (CAPES/Humboldt Agreement—Process 88881.145566/2017-1). We also express our gratitude to Dr. Valdecir A. Paganin for the fruitful discussions and general assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osmando F. Lopes.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puppin, L.G., Khalid, M., da Silva, G.T.T. et al. Electrochemical reduction of CO2 to formic acid on Bi2O2CO3/carbon fiber electrodes. Journal of Materials Research 35, 272–280 (2020). https://doi.org/10.1557/jmr.2020.16

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.16

Navigation